
Irina Bagryanskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C-FÏ€, FH, and FF intermolecular interactions and F-aggregation: Role in crystal engineering of fluoroorganic compounds. Journal of Structural Chemistry, 2009, 50, 741-753.	1.0	91
2	[1,2,5]Thiadiazolo[3,4-c][1,2,5]thiadiazolidyl: A Long-Lived Radical Anion and Its Stable Saltsâ€. Inorganic Chemistry, 2005, 44, 7194-7199.	4.0	57
3	Interaction of 1,2,5-Chalcogenadiazole Derivatives with Thiophenolate: Hypercoordination with Formation of Interchalcogen Bond versus Reduction to Radical Anion. Journal of Physical Chemistry A, 2011, 115, 4851-4860.	2.5	52
4	Family of Robust and Strongly Luminescent Cul-Based Hybrid Networks Made of Ionic and Dative Bonds. Chemistry of Materials, 2020, 32, 10708-10718.	6.7	49
5	Tellurium–Nitrogen Ï€â€Heterocyclic Chemistry – Synthesis, Structure, and Reactivity Toward Halides and Pyridine of 3,4â€Dicyanoâ€1,2,5â€ŧelluradiazole. European Journal of Inorganic Chemistry, 2012, 2012, 3693-3703.	2.0	43
6	Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(<scp>i</scp>) complexes: strong solvation-induced emission enhancement. Inorganic Chemistry Frontiers, 2019, 6, 3168-3176.	6.0	43
7	[1,2,5]Selenadiazolo[3,4â€ <i>c</i>][1,2,5]thiadiazole and [1,2,5]Selenadiazolo[3,4â€ <i>c</i>][1,2,5]thiadiazolidyl – A Synthetic, Structural, and Theoretical Study. European Journal of Inorganic Chemistry, 2007, 2007, 4751-4761.	2.0	41
8	Alkyl-dependent self-assembly of the first red-emitting zwitterionic {Cu ₄ 1 ₆ } clusters from [alkyl-P(2-Py) ₃] ⁺ salts and CuI: when size matters. Dalton Transactions, 2019, 48, 2328-2337.	3.3	41
9	Platform for High-Spin Molecules: A Verdazyl-Nitronyl Nitroxide Triradical with Quartet Ground State. Journal of the American Chemical Society, 2021, 143, 8164-8176.	13.7	41
10	Luminescence of the Mn ²⁺ ion in non- <i>O</i> _h and <i>T</i> _d coordination environments: the missing case of square pyramid. Dalton Transactions, 2019, 48, 16448-16456.	3.3	40
11	Stereochemistry of hydrogen peroxide - acetic acid oxidation of ursolic acid and related compounds Tetrahedron, 1994, 50, 11459-11488.	1.9	38
12	Supramolecular synthons in crystals of partially fluorinated fused aromatics: 1,2,3,4-Tetrafluoronaphthalene and its aza-analogue 1,3,4-trifluoroisoquinoline. Journal of Fluorine Chemistry, 2005, 126, 1281-1287.	1.7	38
13	Synthesis of a Chiral <i>C</i> ₂ -Symmetric Sterically Hindered Pyrrolidine Nitroxide Radical via Combined Iterative Nucleophilic Additions and Intramolecular 1,3-Dipolar Cycloadditions to Cyclic Nitrones. Journal of Organic Chemistry, 2012, 77, 10688-10698.	3.2	34
14	A red-emitting Mn(II)-based coordination polymer build on 1,2,4,5-tetrakis(diphenylphosphinyl)benzene. Inorganic Chemistry Communication, 2019, 107, 107473.	3.9	34
15	Bright green-to-yellow emitting Cu(<scp>i</scp>) complexes based on bis(2-pyridyl)phosphine oxides: synthesis, structure and effective thermally activated-delayed fluorescence. Dalton Transactions, 2018, 47, 2701-2710.	3.3	33
16	Chemoselective mechanochemical route toward a bright TADF-emitting CuI-based coordination polymer. Inorganic Chemistry Frontiers, 2019, 6, 671-679.	6.0	31
17	Regioselectivity of fluoride ion-induced intramolecular nucleophilic cyclization of heptafluoronaphthyl sulfur diimides 2?NfF?N?S?N?SiMe3 and 2?NfFS?N?S?N?S1Me3. Heteroatom Chemistry, 1994, 5, 561-565.	0.7	30
18	Carbocyclic functionalization of quinoxalines, their chalcogen congeners 2,1,3-benzothia/selenadiazoles, and related 1,2-diaminobenzenes based on nucleophilic substitution of fluorine. Journal of Fluorine Chemistry, 2016, 183, 44-58.	1.7	30

#	Article	IF	CITATIONS
19	Substituted 1,3,2,4-benzodithiadiazines: Novel derivatives, by-products, and intermediates. Heteroatom Chemistry, 2001, 12, 563-576.	0.7	29
20	A new family of clusters containing a silver-centered tetracapped [Ag@Ag ₄ (μ ₃ -P) ₄] tetrahedron, inscribed within a N ₁₂ icosahedron. Dalton Transactions, 2017, 46, 12425-12429.	3.3	29
21	New fluorinated 1,2-diaminoarenes, quinoxalines, 2,1,3-arenothia(selena)diazoles and related compounds. Journal of Fluorine Chemistry, 2014, 165, 123-131.	1.7	28
22	Luminescent Cu ^I thiocyanate complexes based on tris(2-pyridyl)phosphine and its oxide: from mono-, di- and trinuclear species to coordination polymers. New Journal of Chemistry, 2016, 40, 10028-10040.	2.8	28
23	Ferromagnetically Coupled <i>S</i> =1 Chains in Crystals of Verdazylâ€Nitronyl Nitroxide Diradicals. Angewandte Chemie - International Edition, 2020, 59, 20704-20710.	13.8	28
24	Manganese(II) Thiocyanate Complexes with Bis(phosphine Oxide) Ligands: Synthesis and Excitation Wavelengthâ€Dependent Multicolor Luminescence. European Journal of Inorganic Chemistry, 2020, 2020, 695-703.	2.0	28
25	Synthesis of new chiral heterocycles of the pyrazole and 2-isoxazoline types from (+)-3-carene Tetrahedron: Asymmetry, 1994, 5, 479-489.	1.8	27
26	Substitution of a Fluorine Atom in Perfluorobenzonitrile by a Lithiated Nitronyl Nitroxide. Journal of Organic Chemistry, 2017, 82, 4179-4185.	3.2	27
27	Interaction of 1,2,3-benzodithiazolyls (Herz radicals) with dioxygen. Mendeleev Communications, 2005, 15, 14-17.	1.6	26
28	Substituted 1,3,2,4-benzodithiadiazines and related compounds. Heteroatom Chemistry, 1999, 10, 113-124.	0.7	25
29	Interaction of 1,3,2,4-Benzodithiadiazines and Their 1-Se Congeners with Ph ₃ P and Some Properties of the Iminophosphorane Products. Inorganic Chemistry, 2011, 50, 3017-3027.	4.0	25
30	1,2,5-Thiadiazole 2-oxides: selective synthesis, structural characterization, and electrochemical properties. Tetrahedron, 2014, 70, 5558-5568.	1.9	25
31	New Chargeâ€Transfer Complexes with 1,2,5â€Thiadiazoles as Both Electron Acceptors and Donors Featuring an Unprecedented Addition Reaction. Chemistry - A European Journal, 2017, 23, 852-864.	3.3	25
32	C–ON bond homolysis of alkoxyamines triggered by paramagnetic copper(<scp>ii</scp>) salts. Inorganic Chemistry Frontiers, 2016, 3, 1464-1472.	6.0	24
33	Radical Anions, Radicalâ€Anion Salts, and Anionic Complexes of 2,1,3â€Benzochalcogenadiazoles. Chemistry - A European Journal, 2019, 25, 806-816.	3.3	24
34	A family of Mn(<scp>ii</scp>) complexes exhibiting strong photo- and triboluminescence as well as polymorphic luminescence. Inorganic Chemistry Frontiers, 2021, 8, 3767-3774.	6.0	24
35	New Polysulfur-Nitrogen Heterocycles by Thermolysis of 1,3λ4δ2,2,4-Benzodithiadiazines in the Hydrocarbon and Fluorocarbon Series. European Journal of Inorganic Chemistry, 2005, 2005, 4099-4108.	2.0	23
36	5,6,7,8-Tetrafluoro-3λ4Î′2,1,2,4-benzothiaselenadiazine, 5,6,7,8-Tetrafluoro-1,3λ4Î′2,2,4-benzodithiadiazine, and Their Hydrocarbon Analogues:Â Molecular and Crystal Structures. Inorganic Chemistry, 2006, 45, 2221-2228.	4.0	23

#	Article	IF	CITATIONS
37	Chiral zinc(II) and cadmium(II) complexes with a dihydrophenanthroline ligand bearing (–)-α-pinene fragments: Synthesis, crystal structures and photophysical properties. Polyhedron, 2016, 117, 437-444.	2.2	22
38	0D to 3D Coordination Assemblies Engineered on Silver(I) Salts and 2â€(Alkylsulfanyl)azine Ligands: Crystal Structures, Dual Luminescence, and Cytotoxic Activity. European Journal of Inorganic Chemistry, 2020, 2020, 1635-1644.	2.0	22
39	Synthesis of extended acyclic azathienes. Crystal and molecular structure of two compounds, Ar(SNî—»Sî—»N)nSiMe3 (Ar î—» 2-O2NC6H4; n î—» 1,2). Polyhedron, 1992, 11, 2787-2793.	2.2	21
40	Sesquiterpene Lactones and Flavonoids from Artemisia albida. Chemistry of Natural Compounds, 2005, 41, 689-691.	0.8	21
41	Luminescent Ag(I) scorpionates based on tris(2-pyridyl)phosphine oxide: Synthesis and cytotoxic activity evaluation. Polyhedron, 2017, 138, 218-224.	2.2	21
42	Silver(I) and gold(I) complexes with tris[2-(2-pyridyl)ethyl]phosphine. Inorganica Chimica Acta, 2019, 494, 78-83.	2.4	21
43	Molecular complexes of octafluoronaphthalene with acyclic and heterocyclic sulfur–nitrogen compounds. Journal of Fluorine Chemistry, 2002, 116, 149-156.	1.7	20
44	Fused 1,2,3â€Thiaselenazoles Synthesized from 1,2,3â€Dithiazoles through Selective Chalcogen Exchange. Chemistry - A European Journal, 2017, 23, 17037-17047.	3.3	20
45	Experimental and Computational Study on the Structure and Properties of Herz Cations and Radicals: 1,2,3-Benzodithiazolium, 1,2,3-Benzodithiazolyl, and Their Se Congeners. Inorganic Chemistry, 2013, 52, 3699-3710.	4.0	19
46	Halogenated (F, Cl) 1,3-benzodiazoles, 1,2,3-benzotriazoles, 2,1,3-benzothia(selena)diazoles and 1,4-benzodiazines inducing Hep2 cell apoptosis. Mendeleev Communications, 2017, 27, 439-442.	1.6	19
47	Z,Z Isomers of Sterically Hindered 1,3-Bis(aryl)-1,3-diaza-2-thiaallenes, (ArN)2S, in the Crystal and in Solution. Mendeleev Communications, 1994, 4, 136-137.	1.6	18
48	Pyridylarsine-based Cu(<scp>i</scp>) complexes showing TADF mixed with fast phosphorescence: a speeding-up emission rate using arsine ligands. Dalton Transactions, 2022, 51, 1048-1055.	3.3	18
49	Fused 1,2,3-Dithiazoles: Convenient Synthesis, Structural Characterization, and Electrochemical Properties. Molecules, 2016, 21, 596.	3.8	17
50	Zinc(II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials ChemistrySelect, 2017, 2, 3584-3593.	1.5	17
51	Photoluminescence of Ag(i) complexes with a square-planar coordination geometry: the first observation. Inorganic Chemistry Frontiers, 2019, 6, 2855-2864.	6.0	17
52	1,2,4,3,5-Benzotrithiadiazepine and its unexpected hydrolysis to unusual 7H,14H-dibenzo[d,i][1,2,6,7,3,8]tetrathiadiazecine. Chemical Communications, 2001, , 1774-1775.	4.1	16
53	Three-component reaction of imidazoles, cyanophenylacetylene, and chalcogens: stereoselective synthesis of 3-alkenyl-2-imidazolethiones and -selones. Tetrahedron, 2014, 70, 1091-1098.	1.9	16
54	Novel long-lived π-heterocyclic radical anion: a hybrid of 1,2,5-thiadiazo- and 1,2,3-dithiazolidyls. Mendeleev Communications. 2015. 25. 336-338.	1.6	16

#	Article	IF	CITATIONS
55	Synthesis of fluorinated N-arylpyrazoles with perfluoro-2-methyl-2-pentene and arylhydrazines. Journal of Fluorine Chemistry, 1999, 98, 29-36.	1.7	15
56	Phenolic Components of Empetrum nigrum Extract and the Crystal Structure of One of Them. Chemistry of Natural Compounds, 2000, 36, 493-496.	0.8	15
57	Does a Stabilising Interaction Favouring theZ,ZConfiguration of S-NSN-S Systems Exist?. Chemistry - A European Journal, 2005, 11, 4544-4551.	3.3	15
58	Synthetic transformations of methylenelactones of eudesmanic type. Behavior of isoalantolactone under the conitions of heck reaction. Russian Journal of Organic Chemistry, 2010, 46, 1719-1734.	0.8	15
59	New molecular complexes of trimeric perfluoro-ortho-phenylene mercury with heterocyclic compounds. Journal of Structural Chemistry, 2010, 51, 552-557.	1.0	15
60	3,1,2,4-Benzothiaselenadiazine and related heterocycles: synthesis and transformation into Herz-type radicals. Mendeleev Communications, 2017, 27, 19-22.	1.6	15
61	Synthesis of dual emitting iodocuprates: can solvents switch the reaction outcome?. Inorganic Chemistry Frontiers, 2020, 7, 2195-2203.	6.0	15
62	Reactivity of 12Ï€-electron arenothiazines: synthesis and molecular structure of triphenyl[(4,5,6,7-tetrafluoro-1,2λ4Ĩ′2,3-benzodithiazol-2-yl)imino]-λ5-phosphane. Journal of the Chemical Society Chemical Communications, 1993, , 298-299.	2.0	14
63	Insight Into the Intermolecular Factors Responsible for theZ,Z Configuration of Ar–X–N=S=N–X–Ar (X = S, Se) Derivatives in the Solid State. European Journal of Inorganic Chemistry, 2007, 2007, 1958-1965.	2.0	14
64	Hydrodefluorination of polyfluoro-2-naphthylamines by Zn in aqueous NH3: A correlation of the product distribution and the computationally predicted regioselectivity of the substrate radical anion fragmentation. Journal of Fluorine Chemistry, 2012, 137, 64-72.	1.7	14
65	Synthesis and some properties of 2 H -benzimidazole 1,3-dioxides. Tetrahedron, 2015, 71, 7233-7244.	1.9	14
66	Frequently used, but still unknown: Terbium(III) tris-hexafluoroacetylacetonate dihydrate. Inorganic Chemistry Communication, 2016, 66, 47-50.	3.9	14
67	Chemistry of Herz radicals: a new way to near-IR dyes with multiple long-lived and differently-coloured redox states. Chemical Communications, 2020, 56, 727-730.	4.1	14
68	Regioselectivity and relative substrate activity of difluoroquinolines containing fluorine atoms in benzene ring in reaction with sodium methoxide. Journal of Fluorine Chemistry, 2005, 126, 1502-1509.	1.7	13
69	Unexpected acid-catalyzed ferrocenylmethylation of diverse nucleophiles with vinyloxymethylferrocene. Tetrahedron, 2016, 72, 4414-4422.	1.9	13
70	Syntheses of chiral nopinane-annelated pyridines of C 2 and D 2 -symmetry: X-ray structures of the fused derivatives of 4,5-diazafluorene, 4,5-diaza-9 H -fluoren-9-one, and 9,9'-bi-4,5-diazafluorenylidene. Mendeleev Communications, 2017, 27, 128-130.	1.6	13
71	(+)-Globulol as a new sesquiterpene alcohol fromAngelica sylvestris L Russian Chemical Bulletin, 1999, 48, 600-603.	1.5	12
72	Novel terpene-based chiral bis-α-aminooximes and the corresponding macrocycles: X-ray structure of a ring-fused 5,7-dioxa-1,4,8,11-tetraazacyclotrideca-3,8-diene derivative. Mendeleev Communications, 2000, 10, 209-210.	1.6	12

#	Article	IF	CITATIONS
73	Oneâ€Pot Halogenâ€Free Synthesis of 2,3â€Dihydroâ€1Hâ€indenâ€2â€ylâ€phosphinic Acid from 1Hâ€indene and Phosphorus via the Trofimov–Gusarova Reaction. Heteroatom Chemistry, 2012, 23, 568-573.	l Elementa 0.7	al 12
74	Alkali Metal Thioselenophosphinates, M[SeSPR ₂]: Oneâ€Pot Multicomponent Synthesis, DFT Study, and Synthetic Application. European Journal of Inorganic Chemistry, 2013, 2013, 415-426.	2.0	12
75	A new access to tri(1-naphthyl)phosphine and its catalytically active palladacycles and luminescent Cu(l) complex. Inorganic Chemistry Communication, 2017, 86, 94-97.	3.9	12
76	Salts of Sterically Hindered Chalcogenâ€Varied Herz Cations Including Those with [Te ₃ Cl ₁₄] ^{2–} and [Te ₄ Cl ₁₈] ^{2–} Anions. European Journal of Inorganic Chemistry, 2018, 2018, 1322-1332.	2.0	12
77	Z,Z Isomers of Polyfluorinated 1,3-Bis(aryl)-1,3-diaza-2-thiaallenes, (ArN=)2S, in the Crystal and in Solution. Mendeleev Communications, 1994, 4, 167-169.	1.6	11
78	An approach to fluorinated phthalonitriles containing a nitronyl nitroxide or iminonitroxide moiety. Journal of Fluorine Chemistry, 2019, 217, 1-7.	1.7	11
79	New Approach toward Dual-Emissive Organic–Inorganic Hybrids by Integrating Mn(II) and Cu(I) Emission Centers in Ionic Crystals. ACS Applied Materials & Interfaces, 2022, 14, 31000-31009.	8.0	11
80	Controllable Synthesis and Luminescence Behavior of Tetrahedral Au@Cu ₄ and Au@Ag ₄ Clusters Supported by tris(2-Pyridyl)phosphine. Inorganic Chemistry, 2022, 61, 10925-10933.	4.0	11
81	Crystal structure of nitromethane. Journal of Structural Chemistry, 1983, 24, 150-151.	1.0	10
82	Unexpected transformation of 1,2-bis(N-methoxy-N-nitrosoamino)cycloalkanes: First synthesis of 4,5-dihydro-1,2,3-triazole 2-oxides. Tetrahedron Letters, 1996, 37, 5997-6000.	1.4	10
83	Molecular structure of azachalcogenenes with aromatic substituents. Journal of Structural Chemistry, 1997, 38, 829-845.	1.0	10
84	Cyclic Aryleneazachalcogenes, X. Synthesis, Molecular Structure and Photoelectron Spectrum of 6,7,8,9-Tetrafluoro-1,3,5,2,4-benzotrithiadiazepine and Attempted Syntheses of Related Larger Size Heterocycles[1]. Chemische Berichte, 1997, 130, 247-253.	0.2	10
85	3-Oxocostusic acid fromArtemisia altaiensis. Chemistry of Natural Compounds, 1998, 34, 145-147.	0.8	10
86	Reactions of chloro-substituted enaminoketones,viz., derivatives of imidazolidine nitroxides, with sodium cyanide. Russian Chemical Bulletin, 2000, 49, 899-905.	1.5	10
87	First synthesis of dialkyl phosphonate derivatives of sesquiterpene α-methylene-γ-lactone. Russian Chemical Bulletin, 2003, 52, 748-751.	1.5	10
88	Synthesis and characterization of the first perfluoroaromatic polyimide of the AB-type. Journal of Fluorine Chemistry, 2012, 135, 129-136.	1.7	10
89	Reaction of 1-substituted benzimidazoles with acylacetylenes and water: ring-opening versus ring-expansion and isotopic effect of deuterium. Tetrahedron, 2015, 71, 2891-2899.	1.9	10
90	Lewis Ambiphilicity of 1,2,5-Chalcogenadiazoles for Crystal Engineering: Complexes with Crown Ethers. Crystal Growth and Design, 2020, 20, 5868-5879.	3.0	10

#	Article	IF	CITATIONS
91	Ajanolide A, a new germacranolide fromAjania fruticulosa. Russian Chemical Bulletin, 1998, 47, 169-172.	1.5	9
92	Configurations of 1,3-bis(aryl)-1,3-diaza-2-thiaallenes in the crystal state. Mendeleev Communications, 1999, 9, 157-158.	1.6	9
93	X-ray and quantum-topological studies of intermolecular interactions in partially fluorinated quinoline crystals. Journal of Structural Chemistry, 2008, 49, 901-908.	1.0	9
94	Supramolecular architecture of azachalcagenene crystals with aromatic substituents. Journal of Structural Chemistry, 2009, 50, 176-189.	1.0	9
95	Synthetic transformations of higher terpenoids. XXI.* Preparation of phlomisoic acid and its N-containing derivatives. Chemistry of Natural Compounds, 2010, 46, 233-241.	0.8	9
96	The First Observation of the <i>E</i> , <i>Z</i> Configuration Of Ar–X–N=S=N–X–Ar (X = S, Se) Chains in the Crystalline State. European Journal of Inorganic Chemistry, 2010, 2010, 4801-4810.	2.0	9
97	Plant coumarins. IX.* Phenolic compounds of Ferulopsis hystrix growing in Mongolia. Cytotoxic activity of 8,9-dihydrofurocoumarins. Chemistry of Natural Compounds, 2012, 48, 211-217.	0.8	9
98	Interaction of 1,3,2,4â€Benzodithiadiazines with Aromatic Phosphines and Phosphites. Heteroatom Chemistry, 2015, 26, 42-50.	0.7	9
99	Interaction of polyfluorinated 2-chloroquinolines with ammonia. Tetrahedron, 2017, 73, 1219-1229.	1.9	9
100	A nitroxide diradical containing a ferrocen-1,1′-diyl-substituted 1,3-diazetidine-2,4-diimine coupler. Tetrahedron Letters, 2017, 58, 478-481.	1.4	9
101	Design, synthesis and isolation of a new 1,2,5-selenadiazolidyl and structural and magnetic characterization of its alkali-metal salts. New Journal of Chemistry, 2019, 43, 16331-16337.	2.8	9
102	Molecular Structure and Properties of N,N'-Disulfinyl-1,2-diaminobenzene. Russian Journal of General Chemistry, 2001, 71, 1050-1054.	0.8	8
103	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 1134-1148.	0.8	8
104	Unexpected water addition to fluorinated 1,3λ4δ2,2,4-benzodithiadiazines with the formation of 2-amino-N-sulfinylbenzenesulfenamides. Mendeleev Communications, 2003, 13, 19-21.	1.6	8
105	Diels–Alder Reactions with Cyclic Sulfones: VII. Synthesis of 1-Benzothiophene 1,1-Dioxide Derivatives. Russian Journal of Organic Chemistry, 2004, 40, 854-865.	0.8	8
106	2,12′-bis-hamazulenyl from Ajania fruticulosa essential oil. Chemistry of Natural Compounds, 2006, 42, 298-300.	0.8	8
107	Preparation and structure elucidation of two minor products from reaction of arglabin with chloroform in the presence of a crown ether. Chemistry of Natural Compounds, 2007, 43, 548-551.	0.8	8
108	Reaction of quinolines fluorinated at the benzene ring with nitrogen-centered nucleophiles. Russian Chemical Bulletin, 2009, 58, 1049-1061.	1.5	8

#	Article	IF	CITATIONS
109	Diels-alder reactions with cyclic sulfones: VIII. Organic catalysis in the synthesis of spiro[1-benzothiophene-4, $5\hat{a}\in^2$ -pyrimidine]- $2\hat{a}\in^2$, $4\hat{a}\in^2$, $6\hat{a}\in^2$ -trione 1,1-dioxides and $2\hat{a}\in^2$ -thioxospiro[1-benzothiophene-4, $5\hat{a}\in^2$ -pyrimidine]- $4\hat{a}\in^2$, $6\hat{a}\in^2$ -dione 1,1-dioxides. Russian Journal of Organic Chemistry, 2009, 45, 87-101.	0.8	8
110	Insertion of 1,3-diphenylprop-2-yn-1-one into imidazo[4,5-b]pyridines in the presence of water: one-pot synthesis of pyrido[2,3-b][1,4]diazocin-9-ones. Mendeleev Communications, 2016, 26, 16-18.	1.6	8
111	Straightforward Solventâ€Free Synthesis of Tertiary Phosphine Chalcogenides from Secondary Phosphines, Electronâ€Rich Alkenes, and Elemental Sulfur or Selenium. Heteroatom Chemistry, 2016, 27, 48-53.	0.7	8
112	(Imidazolâ€2â€yl)methylâ€1,3â€propanediones: Regioselective C–H Functionalization of the Imidazole Ring by Acylacetylene/Aldehyde Pairs. European Journal of Organic Chemistry, 2016, 2016, 1199-1204.	2.4	8
113	1,3-Diaza[3]ferrocenophanes functionalized with a nitronyl nitroxide group. Tetrahedron, 2018, 74, 1942-1950.	1.9	8
114	Molecular and Crystal Structure of 2-Amino-Polyfluorophenyl-4,4,5,5-Tetramethyl-4,5-Dihydro-1H-Imidazol- 3-Oxide-1-Oxyls. Journal of Structural Chemistry, 2018, 59, 689-696.	1.0	8
115	A 1D Coordination Polymer Based on Cul and 2-(Diphenylphosphino)Pyrimidine: Synthesis, Structure and Luminescent Properties. Journal of Structural Chemistry, 2020, 61, 894-898.	1.0	8
116	Preparation of Multi‧pin Systems: A Case Study of Tolaneâ€Bridged Verdazylâ€Based Heteroâ€Diradicals. European Journal of Organic Chemistry, 2020, 2020, 1996-2004.	2.4	8
117	Title is missing!. Russian Chemical Bulletin, 2001, 50, 537-542.	1.5	7
118	Plant Coumarins. 2. Beckmann Rearrangement of Oreoselone E- and Z-Oximes. Chemistry of Natural Compounds, 2005, 41, 657-662.	0.8	7
119	Physicochemical studies of the structure of N,N′-dinitrourea and its salts. Journal of Structural Chemistry, 2009, 50, 1066-1070.	1.0	7
120	Intramolecular 1,3-Dipolar Cycloaddition of Alkenylnitrones of the 4H-Imidazole Series: Synthesis of a New Nitroxide pH-Sensitive Spin Probe. Synthesis, 2010, 2010, 343-348.	2.3	7
121	New polyfluorinated aromatic and aza-aromatic diselenides, selenyl chlorides, non-symmetric selenides and selenoxides. Journal of Fluorine Chemistry, 2012, 144, 118-123.	1.7	7
122	Three-component reaction between secondary phosphine sulfides, elemental selenium and vinyl ethers: the first examples of Markovnikov addition of thioselenophosphinic acids to double bond. Tetrahedron, 2013, 69, 6185-6195.	1.9	7
123	Phosphonium betaines derived from hexafluoro-1,4-naphthoquinone: Synthesis and cytotoxic and antioxidant activities. Journal of Fluorine Chemistry, 2016, 192, 68-77.	1.7	7
124	Synthesis of polyfluorinated arylhydrazines, arylhydrazones and 3-methyl-1-aryl-1H-indazoles. Journal of Fluorine Chemistry, 2018, 214, 48-57.	1.7	7
125	Highly efficient synthesis of polyfluorinated 2-mercaptobenzothiazole derivatives. Journal of Fluorine Chemistry, 2018, 212, 130-136.	1.7	7
126	Assembly of Imidazolyl-Substituted Nitronyl Nitroxides into Ferromagnetically Coupled Chains. Crystals, 2019, 9, 219.	2.2	7

#	Article	IF	CITATIONS
127	Fluorine ontaining nâ€6 and Angular and Linear nâ€6â€n' (n,Ân'Â=Â5,Â6,Â7) Diazaâ€Heterocyclic on Benzene Core in Unified Way. ChemistrySelect, 2019, 4, 2383-2386.	Scaffolds	Assemblec
128	Green- and red-phosphorescent Mn(II) iodide complexes derived from 1,3-bis(diphenylphosphinyl)propane. Polyhedron, 2020, 188, 114706.	2.2	7
129	Isomers of the Allyl Carbocation C ₃ H ₅ ⁺ in Solid Salts: Infrared Spectra and Structures. ACS Omega, 2021, 6, 23691-23699.	3.5	7
130	Hydrodefluorination of N-acetylheptafluoro-2-naphthylamine by zinc in aqueous ammonia: synthetic outcomes and mechanistic considerations. Arkivoc, 2011, 2011, 242-262.	0.5	7
131	Crystal structure of 1-phenyl-1,2,3,4,5,6-hexamethylbenzolonium tetrachloroaluminate. Journal of Structural Chemistry, 1984, 25, 440-445.	1.0	6
132	Oligomer analogs of poly(azathiene) (SN) x. Journal of Structural Chemistry, 1996, 37, 318-322.	1.0	6
133	Reactions of polyfluorinated cyclohexadienones with diazoalkanes. Part 1. Formation of cyclopropanes from polyfluorinated cyclohexa-2,4-dienones with diazomethane and phenyldiazomethane. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1929-1933.	1.3	6
134	Synthesis of Dihalocarbene Derivatives of Arglabin. Chemistry of Natural Compounds, 2005, 41, 552-555.	0.8	6
135	Synthetic transformations of higher terpenoids. XXVII.* Synthesis of 7-hydroxylabdanoids and their transformations. Chemistry of Natural Compounds, 2012, 48, 250-257.	0.8	6
136	Synthetic transformations of isoquinoline alkaloids. 1-alkynyl-3,6-dimethoxy-N-methyl-4,5α-epoxy-6,18-endoethenobenzo[i]isomorphinans and their transformations. Russian Journal of Organic Chemistry, 2013, 49, 1502-1513.	0.8	6
137	Regioselective quaternization of N-alkyl-4-nitro- 1,2,3-triazoles in ButOH–HClO4 system. Mendeleev Communications, 2014, 24, 280-282.	1.6	6
138	Synthesis of 2â€Xâ€, 3â€Xâ€4,4′â€Dicyanobiphenyls (X = CH ₃ , OCH ₃ , F) by Crossâ€ the Terephthalonitrile Dianion with Substituted Benzonitriles. European Journal of Organic Chemistry, 2015, 2015, 4524-4531.	Coupling 2.4	of 6
139	The effect of the oxophilic Tb(III) cation on C ON bond homolysis in alkoxyamines. Inorganic Chemistry Communication, 2018, 91, 5-7.	3.9	6
140	Efficient Synthesis of the <i>Nâ€</i> (butaâ€2,3â€dienyl)carboxamide of Isopimaric Acid and the Potential of This Compound towards Heterocyclic Derivatives of Diterpenoids. ChemistryOpen, 2018, 7, 890-901.	1.9	6
141	Tri-p-Tolylbismuth Diperchlorate and μ-Oxo-bis[(perchlorato)tri-p-tolylbismuth]: Synthesis and Structure. Russian Journal of Inorganic Chemistry, 2018, 63, 861-866.	1.3	6
142	How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines. RSC Advances, 2019, 9, 25776-25789.	3.6	6
143	Synthetic Transformations of Higher Terpenoids. 37. Synthesis and Cytotoxicity of 4-(Oxazol-2-Yl)-18-Norisopimaranes. Chemistry of Natural Compounds, 2019, 55, 52-59.	0.8	6
144	Synthesis and Structure of Fluorinated (Benzo[d]imidazol-2-yl)methanols: Bench Compounds for Diverse Applications. Crystals, 2020, 10, 786.	2.2	6

#	Article	IF	CITATIONS
145	Chalcogen-bonded donor–acceptor complexes of 5,6-dicyano[1,2,5]selenadiazolo[3,4- <i>b</i>]pyrazine with halide ions. New Journal of Chemistry, 2022, 46, 14490-14501.	2.8	6
146	Cyclization of some labdane alcohols with a hydroxy group at C-13 by a superacid. Chemistry of Natural Compounds, 1988, 24, 166-170.	0.8	5
147	Regio- and stereoselectivity of 1,3-dipolar cycloaddition of cyclic aldonitrones of the 3-imidazoline 3-oxide series to monosubstituted alkenes. Russian Chemical Bulletin, 1994, 43, 838-843.	1.5	5
148	Reaction of 2-chloro-3-(4-N,N-dimethylaminoanilino)-1,4-naphthoquinone with cyclic amines (piperidine, morpholine, and pyrrolidine). Russian Chemical Bulletin, 1995, 44, 2346-2349.	1.5	5
149	Guanidine in the synthesis of perfluoroalkylpyrimidines and perfluoroalkyl-s-triazines. Russian Chemical Bulletin, 2001, 50, 476-479.	1.5	5
150	Acid-Catalyzed Rearrangements of (-)-Thujopsene. Russian Journal of Organic Chemistry, 2001, 37, 362-374.	0.8	5
151	Title is missing!. Russian Chemical Bulletin, 2001, 50, 1446-1448.	1.5	5
152	The first stable RNSNH sulfur diimide. Mendeleev Communications, 2002, 12, 167-168.	1.6	5
153	Synthesis of regioisomeric (S)-(+)-3,3,4-trimethyl-8-methoxy-3,4-dihydrobenzo[h]-isoquinolin-1(2H)-one and (S)-(+)-1,2,2-trimethyl-8-methoxy-1,2-dihydrobenzo[f]-isoquinolin-4(3H)-one by the Ritter reaction. Mendeleev Communications, 2005, 15, 125-127.	1.6	5
154	Synthetic Transformations of Higher Terpenoids: IX. Nitrogen-Containing Heterocyclic Compounds on the Basis of Lambertianic Acid. Russian Journal of Organic Chemistry, 2005, 41, 535-545.	0.8	5
155	Unexpectedly low affinity of aromatic disulfides for π-stacking interactions of the arene–polyfluoroarene type. Journal of Fluorine Chemistry, 2006, 127, 746-754.	1.7	5
156	Synthesis and antimicrobial activity of quaternary salts of the alkaloid glaucine. Pharmaceutical Chemistry Journal, 2009, 43, 255-257.	0.8	5
157	Intermolecular interactions and structural dichotomy in 1,3,2,4-benzodithiadiazine crystals. Journal of Structural Chemistry, 2009, 50, 127-136.	1.0	5
158	Synthesis of 7-(furan-2-yl)-7,8,10,10a-tetrahydro-6H-benzo[c]-chromen-6,9(6aH)-diones. Russian Journal of Organic Chemistry, 2010, 46, 1709-1718.	0.8	5
159	Supramolecular 1D assemblies of polyfluorinated arylenediamines and 18-crown-6. Russian Chemical Bulletin, 2010, 59, 382-390.	1.5	5
160	Reactivity of extended chalcogen–nitrogen π-systems: compounds Ar–Se–N=S=N–Se–Ar. Mendeleev Communications, 2011, 21, 320-322.	1.6	5
161	Thermal transformations of 2H-benzimidazole 1,3-dioxides. Russian Chemical Bulletin, 2011, 60, 1723-1728.	1.5	5
162	Plant coumarins: VI. Synthesis of 3-vinylfurocoumarin derivatives based on oreoselone. Russian Journal of Organic Chemistry, 2011, 47, 1083-1090.	0.8	5

#	Article	IF	CITATIONS
163	Plant coumarins: XIII. Synthesis of 2,3,9-trisubstituted furocoumarins. Russian Journal of Organic Chemistry, 2013, 49, 403-411.	0.8	5
164	1-Bromo-3,3,3-trifluoro-1-nitropropene: Synthesis and reaction with phenyl azide. Russian Journal of Organic Chemistry, 2016, 52, 1379-1384.	0.8	5
165	First heteroleptic diselenophosphinate and thioselenophosphinate nickel(II) complexes with N-donor co-ligands. Polyhedron, 2016, 111, 79-85.	2.2	5
166	A Crystallographic Study of a Novel Tetrazolyl-Substituted Nitronyl Nitroxide Radical. Crystals, 2018, 8, 334.	2.2	5
167	A NEW Cu(I) IODIDE COMPLEX SHOWING DEEP-RED LUMINESCENCE. Journal of Structural Chemistry, 2020, 61, 1068-1071.	1.0	5
168	Triterpenoids fromAbies species. I. Abiesonic acid — A triterpenoid with a new carbon skeleton from the oleoresin ofAbies sibirica. Chemistry of Natural Compounds, 1986, 22, 548-552.	0.8	4
169	New derivatives of (â^')-neocembrene from the soft coral Sarcophyton trocheliophorum. Chemistry of Natural Compounds, 1988, 24, 453-458.	0.8	4
170	Polyfunctional triterpenoids from the bark of Yeddo spruce. Chemistry of Natural Compounds, 1992, 28, 575-579.	0.8	4
171	Crystal and molecular structure of subchrysine (3-O-acetylridentine), a new germacranolide fromArtemisia subchrysolepis. Russian Chemical Bulletin, 1998, 47, 1390-1394.	1.5	4
172	Crystal Structure of 6-Chloro-4-nitro-2-phenylpyrimidine. Chemistry of Heterocyclic Compounds, 2001, 37, 206-211.	1.2	4
173	Thebaine Cyclopropanation. Russian Journal of Organic Chemistry, 2003, 39, 1083-1088.	0.8	4
174	A quantum topological study of the electron density in monomers and dimers of acyclic azathiens with aromatic substituents. Journal of Structural Chemistry, 2006, 47, 114-119.	1.0	4
175	Photocyclization of 2-azido-1-(4-tert-butylphenoxy)-9,10-anthraquinone in the presence of substituted phenols. Russian Chemical Bulletin, 2007, 56, 1130-1134.	1.5	4
176	Synthesis of dihalocarbene derivatives of estafiatin guaianolide. Chemistry of Natural Compounds, 2007, 43, 552-554.	0.8	4
177	Synthetic transformations of higher terpenoids: XXII. Reactions of lambertianic acid derivatives with organozinc reagents obtained from ethyl bromoalkanoates. Russian Journal of Organic Chemistry, 2010, 46, 1339-1347.	0.8	4
178	The molecular structure of N,N′-disulfinyl-3,4,5,6-tetrafluoro-1,2-diaminobenzene: A computational and X-ray diffraction study. Journal of Molecular Structure, 2010, 978, 158-162.	3.6	4
179	Skraup-like cyclization of polyfluoro-2-naphthylamines: Vicarious electrophilic substitution of fluorine. Journal of Fluorine Chemistry, 2012, 137, 113-116.	1.7	4
180	Synthesis of 4,8-dihydro-7H-[1,2]dithiolo[3,4-b][1,2,5]oxadiazolo-[3,4-e]pyrazine-7-thione as a new heterocyclic system. Russian Chemical Bulletin, 2014, 63, 552-553.	1.5	4

#	Article	IF	CITATIONS
181	Four-Component Reaction between Secondary Phosphines, Primary Amines, Aldehydes, and Chalcogens: A Facile Access to Functionalized α-Aminophosphine Chalcogenides. Synthesis, 2017, 49, 677-684.	2.3	4
182	Hexafluorosilicates of cobalt(II) complexes with dimethylsulfoxide and dimethylformamide. Russian Journal of Inorganic Chemistry, 2017, 62, 760-765. Antimony Complexes \$5(mi): 11(12.6-	1.3	4
183	$ \{(\{f(OMe\})_2\}\{\{f(C\}_6\}, \{f(H)\}_3\}]_3\}\{f(SbC)\}\{\{f(H)\}_2\}\{f(C)\}, \{f(OEt)\}\{m_{1}, 2^{+} \{[f(H)\}_{f(g)}_2\}, \{f(H)\}_6\}, \{f(H)\}_6\}, \{f(H)\}_3\}, \{f(SbME)\}\{m_{1}, 2^{+}, \{f(C)\}_6\}, \{f(H)\}_3\}, \{f(SbME)\}\{m_{1}, 2^{+}, \{f(F)\}_6\}, \{f(H)\}_3\}, \{f(SbME)\}, \{m_{1}, 2^{+}, 2^{+}, 3^{$	1.3	4
184	Inorganic Chemistry, 2019, 64, 28-35. Triterpenoids from Abies species. IV. New triterpene acids from the needles of Abies sibirica. Chemistry of Natural Compounds, 1987, 23, 684-690.	0.8	3
185	Reactions at the double bond in the epoxy group of arglabin. Chemistry of Natural Compounds, 1991, 27, 27-35.	0.8	3
186	Synthesis of aliphatic 1,2-bishydroxylamines from 1,3- dihydroxyimidazolidines Russian Chemical Bulletin, 1993, 42, 851-857.	1.5	3
187	Reactions ofN-pentafluorophenylcarbonimidoyl dichloride with aromatic hydrocarbons in the presence of aluminum chloride. Russian Chemical Bulletin, 1993, 42, 1540-1546.	1.5	3
188	Artefin ? A new sesquiterpene lactone fromArtemesia filatovii. Chemistry of Natural Compounds, 1995, 31, 55-57.	0.8	3
189	Title is missing!. Russian Chemical Bulletin, 2001, 50, 2092-2094.	1.5	3
190	Title is missing!. Russian Chemical Bulletin, 2001, 50, 1072-1077.	1.5	3
191	Reaction of 3-Carene with Some Nitrating Agents. Russian Journal of Organic Chemistry, 2002, 38, 507-510.	0.8	3
192	[4+2]-Cyclodimer of sabinone: formation, crystal structure, and NMR spectra. Russian Chemical Bulletin, 2003, 52, 1210-1212.	1.5	3
193	One-Step Synthesis of the Vicinal Dinitroguaianolides Achillin and Grossmisin. Chemistry of Natural Compounds, 2003, 39, 362-365.	0.8	3
194	Study of alkaloids of the Siberian and Altai flora. 11. Synthesis of new lappaconitine derivatives. Russian Chemical Bulletin, 2003, 52, 2500-2506.	1.5	3
195	Alkaloids of Eminium lehmannii. Chemistry of Natural Compounds, 2010, 46, 154-157.	0.8	3
196	Synthetic transformations of higher terpenoids: XXIX. Gold catalyzed cycloisomerization of propargylaminomethyl substituted and propargyloxymethyl substituted furanolabdanoids. Russian Journal of Organic Chemistry, 2012, 48, 1081-1089.	0.8	3
197	First synthesis of macrocyclic furanolabdanoids via cycloaddition of diacetylenic derivatives of lambertianic acid to 1,5-diazidopentane. Doklady Chemistry, 2012, 446, 174-179.	0.9	3
198	An Expedient Access to γâ€Ketophosphine Chalcogenides via the Chemo―and Regioselective Addition of Secondary Phosphine Chalcogenides to β,γâ€Ethylenic Ketones. Heteroatom Chemistry, 2015, 26, 455-462.	0.7	3

#	Article	IF	CITATIONS
199	Reaction of aryl(diarylphosphoryl)methanols with alkyl propiolates. Regio- and stereoselective synthesis of functional vinyl ethers. Russian Journal of Organic Chemistry, 2016, 52, 772-776.	0.8	3
200	New cancer cells apoptosis agents: Fluorinated aza-heterocycles. AIP Conference Proceedings, 2017, , .	0.4	3
201	1,3-Dipolar Cycloaddition of a Nitronyl Nitroxide-Substituted Alkyne to Heteroaromatic N-Imines. Australian Journal of Chemistry, 2017, 70, 1317.	0.9	3
202	Synthesis of polyfluorinated aminoquinolines via nitroquinolines. Journal of Fluorine Chemistry, 2018, 211, 14-23.	1.7	3
203	Tris(2,6-dimethoxyphenyl)antimony Diazide: Synthesis and Structure. Russian Journal of Inorganic Chemistry, 2018, 63, 781-785.	1.3	3
204	[Cu4l73â^']n: A novel 1-D iodocuprate aggregate. Journal of Molecular Structure, 2018, 1173, 743-749.	3.6	3
205	Hexa(isothiocyanato)chromates(III) of Some Yttrium Group Lanthanide(III) and Europium Complexes with Nicotinic Acid: Synthesis and Crystal Structures. Russian Journal of Inorganic Chemistry, 2018, 63, 626-630.	1.3	3
206	Synthesis of 1-(Adamantan-1-yl)-1H-1,2,3-Triazoles and their Salts by Adamantylation in AdOH–HClO4 and AdOH–H2SO4 Systems. Chemistry of Heterocyclic Compounds, 2019, 55, 1197-1203.	1.2	3
207	New 3,1,2,4-benzothiaselenadiazines, related π-heterocycles including Herz cations, radicals and molecular complexes, and Bunte salts. New Journal of Chemistry, 0, , .	2.8	3
208	Acid-Catalyzed Condensation of Benzamide with Glyoxal, and Reaction Features. Molecules, 2022, 27, 1094.	3.8	3
209	Trigonal planar clusters Ag@Ag3 supported by (2-PyCH2)3P ligands. Inorganic Chemistry Communication, 2022, 140, 109478.	3.9	3
210	Superacid isomerization of phylloclandene, isophylloclandene, and phylloclandanol. Chemistry of Natural Compounds, 1991, 27, 301-308.	0.8	2
211	Transformations of terpenoids on synthetic zeolites I. Reactions of labdane alcohols on zeolite HY. Chemistry of Natural Compounds, 1991, 27, 579-587.	0.8	2
212	Extractive substances of the bark of Picea obovata. Chemistry of Natural Compounds, 1992, 28, 568-575.	0.8	2
213	The interaction of 2-(4-acetylphenylamino)-3-piperidino-1,4-naphthoquinone with hydroxylamine and hydrazines. Russian Chemical Bulletin, 1994, 43, 1024-1026.	1.5	2
214	Formation of o-nitrosoalkylaminobenzenes in the reaction of benzofurazan s with alcohols in acidic conditions. Chemistry of Heterocyclic Compounds, 1995, 31, 344-351.	1.2	2
215	Reaction of perfluoro-2-methylpent-2-en-3-yl isothiocyanate with methylamine. Russian Chemical Bulletin, 1997, 46, 1300-1302.	1.5	2
216	Molecular structure of 13-bis(2,6-dihalophenyl)-1,3-diaza-2-thiaallenes (2,6-Hal2C6H3-N=)2S in crystal (Hal = F, Cl). Journal of Structural Chemistry, 1999, 40, 640-643.	1.0	2

#	Article	IF	CITATIONS
217	Reaction of perfluoro-2-methylpent-2-ene with ethylenediamine and hexamethylenediamine. Russian Chemical Bulletin, 1999, 48, 1558-1562.	1.5	2
218	Synthesis of two new chloro derivatives of the guaianolide grossmisin and the crystal structure of one derivative. Russian Chemical Bulletin, 2000, 49, 1902-1904.	1.5	2
219	Reaction of guaianolide achillin with chlorine in methanol. Russian Chemical Bulletin, 2000, 49, 1624-1628.	1.5	2
220	Title is missing!. Chemistry of Natural Compounds, 2001, 37, 228-233.	0.8	2
221	Synthesis and crystal structure of a new methooytrichloro derivative of achillin. Russian Chemical Bulletin, 2003, 52, 1449-1451.	1.5	2
222	Synthesis and crystal structure of 29,30-dibromoallobetulin. Chemistry of Natural Compounds, 2006, 42, 186-188.	0.8	2
223	Synthesis of 4(6)-amino-6(4)-halo-2,1,3-benzoxadiazoles. Russian Journal of Organic Chemistry, 2010, 46, 693-698.	0.8	2
224	Synthesis and structure of N-(4-dialkylaminophenyl)hexafluoro-1,4-naphthoquinone 4-imines. Russian Journal of Organic Chemistry, 2013, 49, 1019-1024.	0.8	2
225	Reaction of 4-hydroxycoumarin with 2-acetyloxiranes. Russian Journal of Organic Chemistry, 2013, 49, 1497-1501.	0.8	2
226	Synthetic Studies on Tricyclic Diterpenoids: Direct Allylic Amination Reaction of Isopimaric Acid Derivatives. ChemistryOpen, 2016, 5, 65-70.	1.9	2
227	Synthesis of 3-trimethylsiloxy-1-(furan-3-yl)butadiene and its reactions with dienophiles. Chemistry of Heterocyclic Compounds, 2016, 52, 364-373.	1.2	2
228	Synthetic modifications of carboline alkaloid harmine: synthesis of 8-substituted derivatives. Chemistry of Heterocyclic Compounds, 2019, 55, 135-141.	1.2	2
229	STRUCTURE AND STEREOCHEMISTRY OF A HYDRAZONE DERIVATIVE OF HARMINE. Journal of Structural Chemistry, 2021, 62, 491-495.	1.0	2
230	Synthesis and Molecular Structure of Hydroxy and Hydroxyimino Derivatives of Hollongdione. Russian Journal of Organic Chemistry, 2021, 57, 671-674.	0.8	2
231	Mono- and sesquiterpenoids of the oleoresin ofAbies nephrolepis. Crystal structure of (+)-?-cedrol. Chemistry of Natural Compounds, 1985, 21, 38-41.	0.8	1
232	Triterpene glycosides of Thalictrum squarrosum. II. Molecular and crystal structure of squarrofuric acid. Chemistry of Natural Compounds, 1987, 23, 444-447.	0.8	1
233	Crystal, molecular, and ?-electronic structure of 1,3,2-benzodithiazolium chloride. Chemistry of Heterocyclic Compounds, 1990, 26, 1399-1404.	1.2	1
234	Molecular structure of stable nitroxyl radicals of imidazoline with gem-dialkoxy group at the ?-carbon atom of the radical center. Journal of Structural Chemistry, 1992, 33, 447-451.	1.0	1

#	Article	IF	CITATIONS
235	Synthesis of stable oxazolidine nitroxyl radicals with methoxy groups at the ?-carbon atoms to the radical site. Bulletin of the Russian Academy of Sciences Division of Chemical Science, 1992, 41, 758-764.	0.0	1
236	An Unusual Dimerization in the Nitrosation Reaction of a Caryophyllene-type α,β-Unsaturated Oxime. Mendeleev Communications, 1992, 2, 82-83.	1.6	1
237	Reactions of diterpenoids on solid supports. I. Oxidation of methyl abietate on the sorbents Al2O3 and SiO2 containing potassium permanganate. Chemistry of Natural Compounds, 1994, 30, 339-345.	0.8	1
238	Unexpected condensation of 3-chloro-1,2,3-trimethyl-4-methylidenecyclobutene with 1,2-dimethyl-3,4-dimethylidenecyclobutene. Russian Chemical Bulletin, 1996, 45, 2807-2809.	1.5	1
239	New reaction of mononitroarenes: Condensation with two acetophenone moleculesvia the nitro group. Russian Chemical Bulletin, 1996, 45, 462-464.	1.5	1
240	Formation of the pyrroline-N-oxide ring by the reaction of isonitrosoketones with enamines and some conversions of the pyrroline-N-oxides obtained. Chemistry of Heterocyclic Compounds, 1996, 32, 907-913.	1.2	1
241	Reaction of perfluoro-2-methylpent-2-en-3-yl isothiocyanate with ethyl and isopropyl alcohols. Russian Chemical Bulletin, 1998, 47, 1965-1970.	1.5	1
242	Migration of the O-acetyl group in the acetonation of guaianolide rhaposerin. Russian Chemical Bulletin, 2001, 50, 2459-2462.	1.5	1
243	Title is missing!. Russian Chemical Bulletin, 2002, 51, 1965-1967.	1.5	1
244	Structure of 2-Amino-4-phenyl-9H-pyrimido[4,5-b]indole and Its Nitrate in Crystal and Solution. Journal of Structural Chemistry, 2003, 44, 650-654.	1.0	1
245	Absolute Configuration of Stizolicin and Synthesis and Biological Activity of Its Amino Derivatives. Chemistry of Natural Compounds, 2005, 41, 561-564.	0.8	1
246	Diels-alder reaction with cyclic sulfones. 9.* Synthesis of 10-oxo-1h-tetrahydrofluo-reno[2,1-b]thiophene dioxides*2. Chemistry of Heterocyclic Compounds, 2008, 44, 1220-1228.	1.2	1
247	Syntheses based on anabasine. Russian Chemical Bulletin, 2008, 57, 140-150.	1.5	1
248	Synthesis and structure of 2-phenylanthra[9,1-bc]pyrrol-6-one. Russian Journal of Organic Chemistry, 2010, 46, 866-870.	0.8	1
249	Synthesis of oxazolidinylphosphine chalcogenides from aminoethyl vinyl ethers. Russian Chemical Bulletin, 2013, 62, 107-110.	1.5	1
250	Chemoselective synthesis of first representatives of bis(diorganothiophosphinyl)selenides, (R2P=S)2Se, from secondary phosphine sulfides and elemental selenium. Inorganic Chemistry Communication, 2013, 30, 124-127.	3.9	1
251	Double complex [Mn2(C11H13N3O)6(H2O)2][Cr(NH3)2(NCS)4]4: Synthesis and crystal structure. Russian Journal of Inorganic Chemistry, 2017, 62, 182-186.	1.3	1
252	Synthesis, Structure and Emission Properties of [Cu2(μ2-I)2L4] Complex Based on 2-(Methylthio)Pyrazine. Journal of Structural Chemistry, 2019, 60, 967-971.	1.0	1

#	Article	IF	CITATIONS
253	Highly efficient synthesis of novel fluorinated 3-amino-2-mercaptobenzothiazole-2(3H)-thione derivatives. Journal of Fluorine Chemistry, 2020, 239, 109628.	1.7	1
254	Synthesis, Molecular, and Crystal Structure of Tris(2-carbamoylmethoxyphenyl)phosphine Oxide. Russian Journal of General Chemistry, 2020, 90, 1840-1844.	0.8	1
255	Interaction of 1,3λ4δ2,2,4-benzodithiadiazines with neutral and charged S-electrophiles: SCl2, C6F5SCl, and NS2+. Chemistry of Heterocyclic Compounds, 2020, 56, 968-972.	1.2	1
256	Synthesis and Structure of Antimony Complex Compounds [(4-N,N-Me2C6H4)3MeSb]I and [(4-N,N-Me2C6H4)3MeSb]2[Hg2I6]·2DMSO. Russian Journal of General Chemistry, 2021, 91, 1361-1367.	0.8	1
257	The formation of dicyanoterphenyls by the interaction of terephthalonitrile dianion with biphenylcarbonitriles in liquid ammonia. Arkivoc, 2011, 2011, 123-133.	0.5	1
258	Interaction of cembrene with N-bromosuccinimide. Crystal structure of the cyclization product. Chemistry of Natural Compounds, 1983, 19, 619-620.	0.8	0
259	Crystal and molecular structure of trans-3,4-dichloro-1,2,3,4-tetramethylcyclobutene. Journal of Structural Chemistry, 1984, 25, 502-503.	1.0	Ο
260	Structure of a new triterpenoid from the bark of the Siberian larch. Chemistry of Natural Compounds, 1990, 26, 545-548.	0.8	0
261	Photochemical synthesis of 1,2,3,4,5,6,8,9-octamethyl-C2V-bishomocubane. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1991, 40, 1279-1281.	0.0	Ο
262	Molecular structure of 1-nitroso-4-phenyl-2,2,5,5-tetramethyl-3-imidazoline-3-oxide, the nearest structural analogue of the corresponding nitroxyl radical. Journal of Structural Chemistry, 1993, 33, 942-943.	1.0	0
263	Crystal and molecular structure of 1R,8S-dichlor-3S,4,5,6R, 9,10-hexamethyl-and 1R,3S,4,5,6R8S,9,10-octamethyltricylo-[6,2,0,03,6]deca-4,9-dienes-precursors of octamethyl-C2?-bishomocubane. Journal of Structural Chemistry, 1993, 33, 617-620.	1.0	Ο
264	Cyclization of cembrane diterpenoids. V. Selectivity of the formation of a product of the cyclization of cembrene under the action of N-bromosuccinimide, and the crystal structure of this product. Chemistry of Natural Compounds, 1993, 29, 608-612.	0.8	0
265	1α,2α-Epoxygibberellin A3: Partial synthesis, NMR spectra, biological activity, and crystal structure of its methyl ester. Chemistry of Natural Compounds, 1993, 29, 479-483.	0.8	Ο
266	Formation of derivatives of indole and 1-hydroxyindole upon reaction of 4-oxo-5-hydroximino-4,5,6,7-tetrahydrobenzofurazan and -tetrahydrobenzofuroxan with enamines. Chemistry of Heterocyclic Compounds, 1994, 30, 178-187.	1.2	0
267	Synthesis of gibberellins A8 and A56 from gibberellin A3. Chemistry of Natural Compounds, 1994, 30, 613-618.	0.8	Ο
268	Cyclization of cembrane diterpenoids. VI. Products of the cyclization of 5β-acetoxyisocembrol. Chemistry of Natural Compounds, 1994, 30, 229-237.	0.8	0
269	Triterpenoids fromAbies sp Russian Chemical Bulletin, 1996, 45, 709-712.	1.5	0
270	Triterpenoids fromAbies sp Russian Chemical Bulletin, 1996, 45, 713-716.	1.5	0

#	Article	IF	CITATIONS
271	Molecular structure of N,N-bis(trimethylsilyl)-3-chloro-2,5,6-trifluoropyridine-4-sulfenamide. Journal of Structural Chemistry, 1996, 37, 358-360.	1.0	0
272	Triterpenoids fromAbies species. Russian Chemical Bulletin, 1997, 46, 1258-1260.	1.5	0
273	The First X-ray Study of Alkoxynitrosoamines. Acta Crystallographica Section C: Crystal Structure Communications, 1998, 54, IUC9800073.	0.4	0
274	Synthesis and crystal structure of a pyrazole derivative of artemisia ketone. Chemistry of Natural Compounds, 2000, 36, 152-155.	0.8	0
275	The First Stable R—N=S=N—H Sulfur Diimide ChemInform, 2003, 34, no.	0.0	Ο
276	Unexpected Water Addition to Fluorinated 1,3λ4Î′2,2,4-Benzodithiadiazines with the Formation of 2-Amino-N-sulfinylbenzenesulfenamides ChemInform, 2003, 34, no.	0.0	0
277	[4 + 2]-Cyclodimer of Sabinone: Formation, Crystal Structure, and NMR Spectra ChemInform, 2003, 34, no.	0.0	Ο
278	Formation of the Dinitro-3H-pyrazole Derivative of Cycloartemisiaketone Oxime. Chemistry of Natural Compounds, 2004, 40, 134-136.	0.8	0
279	Diels?Alder Reactions with Cyclic Sulfones. Part 7. Synthesis of 1-Benzothiophene 1,1-Dioxide Derivatives ChemInform, 2005, 36, no.	0.0	Ο
280	Synthesis of Regioisomeric (S)-(+)-3,3,4-Trimethyl-8-methoxy-3,4-dihydrobenzo [h]isoquinolin-1(2H)-one and (S)-(+)-1,2,2-Trimethyl-8-methoxy-1,2-dihydrobenzo [f]isoquinolin-4(3H)-one by the Ritter Reaction. ChemInform, 2005, 36, no.	0.0	0
281	Synthesis and Crystal and Molecular Structure of a Pulegone Isoxazole Derivative. Chemistry of Natural Compounds, 2005, 41, 103-104.	0.8	0
282	A Straightforward and Convenient Synthesis of Cbz-Protected 2-(1-Aminoalkyl)oxazole-5-carboxylates. Synlett, 2005, 2005, 2072-2076.	1.8	0
283	Quantum-topological analysis of electron density in azachalcogenene crystals with aromatic substituents. Journal of Structural Chemistry, 2007, 48, 759-764.	1.0	Ο
284	Synthesis of quaternary salts of Peganum harmala alkaloids. Chemistry of Natural Compounds, 2009, 45, 601-603.	0.8	0
285	Diels-alder reactions with cyclic sulfones: X. Synthesis of 4-carbamoyl- and 4-hydrazido-substituted hexahydro-1-benzothiophene S,S-dioxides. Russian Journal of Organic Chemistry, 2009, 45, 1546-1554.	0.8	Ο
286	Cobalt(II) hexaiododimercurate(II) complex with ε-caprolactam: Synthesis and crystal structure. Russian Journal of Inorganic Chemistry, 2017, 62, 187-190.	1.3	0
287	Bis(dicyclohexylselenophosphinyl)selenide, [Cy2P(Se)]2Se: Synthesis, molecular structure and application for self-assembly of a tetrahedral Cu(I) cluster. Journal of Molecular Structure, 2018, 1160, 208-214.	3.6	0
288	2-DIETHYLAMINOVINYL DERIVATIVES OF HALOGENATED 1,4-QUINONES: SYNTHETIC AND STRUCTURAL ASPECTS. Journal of Structural Chemistry, 2020, 61, 1253-1259.	1.0	0

#	ARTICLE	IF	CITATIONS
289	Ferromagnetically Coupled S =1 Chains in Crystals of Verdazylâ€Nitronyl Nitroxide Diradicals. Angewandte Chemie, 2020, 132, 20885-20891.	2.0	0
290	Synthesis of 2-[2-(hydroxyimino)alkyl]-1,2-oxazol-5(2Ð) -ones. Chemistry of Heterocyclic Compounds, 2020, 56, 208-212.	1.2	0
291	New Arylhalo-Derivatives of Grosshemin. Chemistry of Natural Compounds, 2021, 57, 685-690.	0.8	0
292	Synthesis and Properties of 1,3-Dialkyl-4-nitro-1,2,3-triazolium Salts. Chemistry for Sustainable Development, 2021, 29, 702-707.	0.1	0