Mark M Banaszak Holl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321581/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Column Agglutination Assay Using Polystyrene Microbeads for Rapid Detection of Antibodies against SARS-CoV-2. ACS Applied Materials & Interfaces, 2022, 14, 2501-2509.	8.0	3
2	Anti-tumor Effect of Folate-Binding Protein: <i>In Vitro</i> and <i>In Vivo</i> Studies. Molecular Pharmaceutics, 2022, 19, 843-852.	4.6	3
3	Morphology and Viscosity Changes after Reactive Uptake of Isoprene Epoxydiols in Submicrometer Phase Separated Particles with Secondary Organic Aerosol Formed from Different Volatile Organic Compounds. ACS Earth and Space Chemistry, 2022, 6, 871-882.	2.7	11
4	Photocatalytic Degradation of 1,4-Dioxane and Malachite Green over Zinc Oxide/Cellulose Nanofiber Using UVA/B from Direct Sunlight and a Continuous Flow Reactor. ACS ES&T Water, 2022, 2, 786-797.	4.6	4
5	Nanoparticle Surface Cross-Linking: A Universal Strategy to Enhance the Mechanical Properties of Latex Films. Macromolecules, 2022, 55, 5301-5313.	4.8	7
6	Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study. Journal of Structural Biology, 2022, 214, 107878.	2.8	5
7	Cyclodextrin metal-organic framework-polymer composite membranes towards ultimate and stable enantioselectivity. Journal of Membrane Science, 2021, 620, 118956.	8.2	42
8	Thermally regenerable metal-organic framework with high monovalent metal ion selectivity. Chemical Engineering Journal, 2021, 405, 127037.	12.7	31
9	Hierarchical Nature of Nanoscale Porosity in Bone Revealed by Positron Annihilation Lifetime Spectroscopy. ACS Nano, 2021, 15, 4321-4334.	14.6	8
10	Engineering laminated paper for SARS-CoV-2 medical gowns. Polymer, 2021, 222, 123643.	3.8	5
11	Polymerization-Induced Hierarchical Self-Assembly: From Monomer to Complex Colloidal Molecules and Beyond. ACS Nano, 2021, 15, 13721-13731.	14.6	25
12	Visible-Light-Sensitive Triazine-Coated Silica Nanoparticles: A Dual Role Approach to Polymer Nanocomposite Materials with Enhanced Properties. ACS Applied Materials & Interfaces, 2021, 13, 46033-46042.	8.0	9
13	Uptake and Retention of Nanoplastics in Quagga Mussels. Global Challenges, 2020, 4, 1800104.	3.6	28
14	Microplastic Pollution in Deep-Sea Sediments From the Great Australian Bight. Frontiers in Marine Science, 2020, 7, .	2.5	137
15	ZnO/Cellulose Nanofiber Composites for Sustainable Sunlight-Driven Dye Degradation. ACS Applied Nano Materials, 2020, 3, 10284-10295.	5.0	43
16	Rapid Gel Card Agglutination Assays for Serological Analysis Following SARS-CoV-2 Infection in Humans. ACS Sensors, 2020, 5, 2596-2603.	7.8	26
17	Microwave-Assisted Hydrothermal Decomposition of Super Absorbent Polymers. ACS Sustainable Chemistry and Engineering, 2020, 8, 14504-14510.	6.7	9
18	Bulk to Nanometer-Scale Infrared Spectroscopy of Pharmaceutical Dry Powder Aerosols. Analytical Chemistry, 2020, 92, 8323-8332.	6.5	22

#	Article	IF	CITATIONS
19	Fe/Mg-Modified Carbonate Apatite with Uniform Particle Size and Unique Transport Protein-Related Protein Corona Efficiently Delivers Doxorubicin into Breast Cancer Cells. Nanomaterials, 2020, 10, 834.	4.1	19
20	An Anterior Cruciate Ligament Failure Mechanism. American Journal of Sports Medicine, 2019, 47, 2067-2076.	4.2	41
21	Frontispiz: Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, .	2.0	0
22	Frontispiece: Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, .	13.8	2
23	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie, 2019, 131, 17084-17091.	2.0	31
24	Homochiral MOF–Polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angewandte Chemie - International Edition, 2019, 58, 16928-16935.	13.8	141
25	Bicomponent poly(ethylene)/poly(propylene) fiber bonding using dielectric inks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123868.	4.7	0
26	Coiled-Coil-Mediated Assembly of an Icosahedral Protein Cage with Extremely High Thermal and Chemical Stability. Journal of the American Chemical Society, 2019, 141, 9207-9216.	13.7	51
27	Distributions: The Importance of the Chemist's Molecular View for Biological Materials. Biomacromolecules, 2018, 19, 1469-1484.	5.4	4
28	Tailoring dendrimer conjugates for biomedical applications: the impact of altering hydrophobicity. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	4
29	Cathepsin K inhibition preserves compressive load in lumbar vertebrae of osteoporotic monkeys. Bone Reports, 2018, 9, 159-164.	0.4	2
30	Topical Deferoxamine Alleviates Skin Injury and Normalizes Atomic Force Microscopy Patterns Following Radiation in a Murine Breast Reconstruction Model. Annals of Plastic Surgery, 2018, 81, 604-608.	0.9	12
31	Folate binding protein: therapeutic natural nanotechnology for folic acid, methotrexate, and leucovorin. Nanoscale, 2017, 9, 2603-2615.	5.6	14
32	Nanostructured materials for microwave receptors. Progress in Materials Science, 2017, 87, 221-245.	32.8	52
33	Microstructure dependent binding of pigment epithelium derived factor (PEDF) to type I collagen fibrils. Journal of Structural Biology, 2017, 199, 132-139.	2.8	12
34	Dendrimer and dendrimer–conjugate protein complexes and protein coronas. Canadian Journal of Chemistry, 2017, 95, 903-906.	1.1	3
35	Conjugation Dependent Interaction of Folic Acid with Folate Binding Protein. Bioconjugate Chemistry, 2017, 28, 2350-2360.	3.6	13
36	Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric Aerosol Particles: Subdiffraction Limit Vibrational Spectroscopy and Morphological Analysis. Analytical Chemistry, 2017, 89, 8594-8598.	6.5	58

#	Article	IF	CITATIONS
37	The Relationship of Collagen Structural and Compositional Heterogeneity to Tissue Mechanical Properties: A Chemical Perspective. ACS Nano, 2017, 11, 10665-10671.	14.6	36
38	Folate-Binding Protein Self-Aggregation Drives Agglomeration of Folic Acid Targeted Iron Oxide Nanoparticles. Bioconjugate Chemistry, 2017, 28, 81-87.	3.6	15
39	Cationic Polymer Intercalation into the Lipid Membrane Enables Intact Polyplex DNA Escape from Endosomes for Gene Delivery. Molecular Pharmaceutics, 2016, 13, 1967-1978.	4.6	48
40	Estrogen depletion and drug treatment alter the microstructure of type I collagen in bone. Bone Reports, 2016, 5, 243-251.	0.4	8
41	Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells. ACS Biomaterials Science and Engineering, 2016, 2, 1540-1545.	5.2	4
42	InÂvivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials, 2016, 104, 361-371.	11.4	110
43	Three RNA Microenvironments Detected in Fluxional Gene Delivery Polyplex Nanoassemblies. ACS Macro Letters, 2016, 5, 1104-1108.	4.8	1
44	Role of Cell Membrane–Vector Interactions in Successful Gene Delivery. Accounts of Chemical Research, 2016, 49, 1486-1493.	15.6	66
45	Rapid Exchange Between Free and Bound States in RNA–Dendrimer Polyplexes: Implications on the Mechanism of Delivery and Release. Biomacromolecules, 2016, 17, 154-164.	5.4	20
46	Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein. Biomacromolecules, 2016, 17, 922-927.	5.4	13
47	Generation 3 PAMAM dendrimer TAMRA conjugates containing precise dye/dendrimer ratios. Materials Today Communications, 2015, 4, 86-92.	1.9	7
48	G5-PEG PAMAM dendrimer incorporating nanostructured lipid carriers enhance oral bioavailability and plasma lipid-lowering effect of probucol. Journal of Controlled Release, 2015, 210, 160-168.	9.9	41
49	Fluorophore:Dendrimer Ratio Impacts Cellular Uptake and Intracellular Fluorescence Lifetime. Bioconjugate Chemistry, 2015, 26, 304-315.	3.6	26
50	Folate binding protein—Outlook for drug delivery applications. Chinese Chemical Letters, 2015, 26, 426-430.	9.0	12
51	Oral Absorption Enhancement of Probucol by PEGylated C5 PAMAM Dendrimer Modified Nanoliposomes. Molecular Pharmaceutics, 2015, 12, 665-674.	4.6	32
52	Alteration of Type I collagen microstructure induced by estrogen depletion can be prevented with drug treatment. BoneKEy Reports, 2015, 4, 697.	2.7	6
53	High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification. Scientific Reports, 2015, 5, 11811.	3.3	101
54	Force Spectroscopy of Multivalent Binding of Riboflavin-Conjugated Dendrimers to Riboflavin Binding Protein. Journal of Physical Chemistry B, 2015, 119, 5785-5792.	2.6	17

#	Article	IF	CITATIONS
55	Quantitative Measurement of Cationic Polymer Vector and Polymer–pDNA Polyplex Intercalation into the Cell Plasma Membrane. ACS Nano, 2015, 9, 6097-6109.	14.6	42
56	G5 PAMAM dendrimer versus liposome: A comparison study on the in vitro transepithelial transport and in vivo oral absorption of simvastatin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1141-1151.	3.3	32
57	Characterization of Folic Acid and Poly(amidoamine) Dendrimer Interactions with Folate Binding Protein: A Force-Pulling Study. Journal of Physical Chemistry B, 2015, 119, 11506-11512.	2.6	16
58	The role of caveolin-1 and syndecan-4 in the internalization of PEGylated PAMAM dendrimer polyplexes into myoblast and hepatic cells. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 658-663.	4.3	18
59	Aryl Halide Radical Clocks as Probes of Stannylene/Aryl Halide C–H Activation Rates. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 250-257.	3.7	3
60	Isolation and Characterization of Precise Dye/Dendrimer Ratios. Chemistry - A European Journal, 2014, 20, 4638-4645.	3.3	22
61	Poly(amidoamine) Dendrimer–Methotrexate Conjugates: The Mechanism of Interaction with Folate Binding Protein. Molecular Pharmaceutics, 2014, 11, 4049-4058.	4.6	29
62	Diffusion NMR Study of Generation-Five PAMAM Dendrimer Materials. Journal of Physical Chemistry B, 2014, 118, 7195-7202.	2.6	36
63	Detergent Induction of HEK 293A Cell Membrane Permeability Measured under Quiescent and Superfusion Conditions Using Whole Cell Patch Clamp. Journal of Physical Chemistry B, 2014, 118, 2112-2123.	2.6	21
64	Multivalent Polymers for Drug Delivery and Imaging: The Challenges of Conjugation. Biomacromolecules, 2014, 15, 3215-3234.	5.4	56
65	Quantification of cytosolic plasmid DNA degradation using high-throughput sequencing: implications for gene delivery. Journal of Gene Medicine, 2014, 16, 75-83.	2.8	13
66	Avidity Mechanism of Dendrimer–Folic Acid Conjugates. Molecular Pharmaceutics, 2014, 11, 1696-1706.	4.6	51
67	Hyperspectral Imaging and Characterization of Live Cells by Broadband Coherent Anti-Stokes Raman Scattering (CARS) Microscopy with Singular Value Decomposition (SVD) Analysis. Applied Spectroscopy, 2014, 68, 1116-1122.	2.2	24
68	The Impact of Estrogen Depletion and Drug Treatment on Type I Collagen Microstructure. Microscopy and Microanalysis, 2014, 20, 2070-2071.	0.4	0
69	Avidity Modulation of Folate-Targeted Multivalent Dendrimers for Evaluating Biophysical Models of Cancer Targeting Nanoparticles. ACS Chemical Biology, 2013, 8, 2063-2071.	3.4	56
70	Type I Collagen Self-Assembly: The Roles of Substrate and Concentration. Langmuir, 2013, 29, 2330-2338.	3.5	49
71	Epithelial–Mesenchymal Transition Enhances Nanoscale Actin Filament Dynamics of Ovarian Cancer Cells. Journal of Physical Chemistry B, 2013, 117, 9233-9240.	2.6	16
72	Variation in type I collagen fibril nanomorphology: the significance and origin. BoneKEy Reports, 2013, 2, 394.	2.7	62

Mark M Banaszak Holl

#	Article	IF	CITATIONS
73	PAMAM dendrimers as quantized building blocks for novel nanostructures. Soft Matter, 2013, 9, 11188.	2.7	27
74	Attractive Hydration Forces in DNA–Dendrimer Interactions on the Nanometer Scale. Journal of Physical Chemistry B, 2013, 117, 973-981.	2.6	22
75	Nanoscale structure of type I collagen fibrils: Quantitative measurement of Dâ€spacing. Biotechnology Journal, 2013, 8, 117-126.	3.5	56
76	Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis. Journal of Solid State Chemistry, 2013, 206, 192-198.	2.9	74
77	Polyplex-Induced Cytosolic Nuclease Activation Leads to Differential Transgene Expression. Molecular Pharmaceutics, 2013, 10, 3013-3022.	4.6	21
78	Quantitative analysis of generation and branch defects in G5 poly(amidoamine) dendrimer. Polymer, 2013, 54, 4126-4133.	3.8	57
79	Dendrimer-Based Multivalent Vancomycin Nanoplatform for Targeting the Drug-Resistant Bacterial Surface. ACS Nano, 2013, 7, 214-228.	14.6	133
80	Polyplex Exposure Inhibits Cell Cycle, Increases Inflammatory Response, and Can Cause Protein Expression without Cell Division. Molecular Pharmaceutics, 2013, 10, 1306-1317.	4.6	27
81	Dual-wavelength digital holographic imaging with phase background subtraction. Optical Engineering, 2012, 51, 055801.	1.0	19
82	Effect of pH and Generation on Structural Properties of Poly(amidoamine) Dendrons Studied by Molecular Dynamics Simulations. Journal of Computational and Theoretical Nanoscience, 2012, 9, 127-136.	0.4	1
83	Type I Collagen <i>D</i> -Spacing in Fibril Bundles of Dermis, Tendon, and Bone: Bridging between Nano- and Micro-Level Tissue Hierarchy. ACS Nano, 2012, 6, 9503-9514.	14.6	77
84	Bifunctional PAMAM Dendrimer Conjugates of Folic Acid and Methotrexate with Defined Ratio. Biomacromolecules, 2012, 13, 982-991.	5.4	93
85	Efficient in Vitro siRNA Delivery and Intramuscular Gene Silencing Using PEG-Modified PAMAM Dendrimers. Molecular Pharmaceutics, 2012, 9, 1812-1821.	4.6	92
86	Cell volume changes during apoptosis monitored in real time using digital holographic microscopy. Journal of Structural Biology, 2012, 178, 270-278.	2.8	80
87	Intrinsic Dynamics of DNA–Polymer Complexes: A Mechanism for DNA Release. Molecular Pharmaceutics, 2012, 9, 2743-2749.	4.6	22
88	Estrogen Depletion Results in Nanoscale Morphology Changes in Dermal Collagen. Journal of Investigative Dermatology, 2012, 132, 1791-1797.	0.7	34
89	Biophysical Characterization of a Riboflavin-Conjugated Dendrimer Platform for Targeted Drug Delivery. Biomacromolecules, 2012, 13, 507-516.	5.4	52
90	Dendrimer-Based Nanoparticle Therapies: Can Uniform Multifunctional Therapeutics Be Made with Current Chemical Approaches?. Nanostructure Science and Technology, 2012, , 295-313.	0.1	0

#	Article	IF	CITATIONS
91	Concurrent enrollment in lecture and laboratory enhances student performance and retention. Journal of Research in Science Teaching, 2012, 49, 659-682.	3.3	40
92	Best Practices for Purification and Characterization of PAMAM Dendrimer. Macromolecules, 2012, 45, 5316-5320.	4.8	56
93	Dendrimer-based multivalent methotrexates as dual acting nanoconjugates for cancer cell targeting. European Journal of Medicinal Chemistry, 2012, 47, 560-572.	5.5	77
94	Dual wavelength digital holographic imaging of cells with phase background subtraction. , 2012, , .		1
95	Evaluation of a symmetry-based strategy for assembling protein complexes. RSC Advances, 2011, 1, 1004.	3.6	36
96	Acetonitrile shortage: Use of isopropanol as an alternative elution system for ultra/high performance liquid chromatography. Analytical Methods, 2011, 3, 56-58.	2.7	21
97	2H-1,2-Thiaborin: A New Boron–Sulfur Heterocycle. Organometallics, 2011, 30, 3698-3700.	2.3	21
98	Bioanalytical Screening of Riboflavin Antagonists for Targeted Drug Delivery—A Thermodynamic and Kinetic Study. ACS Medicinal Chemistry Letters, 2011, 2, 363-367.	2.8	29
99	Heterogeneous Ligand–Nanoparticle Distributions: A Major Obstacle to Scientific Understanding and Commercial Translation. Accounts of Chemical Research, 2011, 44, 1135-1145.	15.6	72
100	Design, Synthesis, and Biological Functionality of a Dendrimer-Based Modular Drug Delivery Platform. Bioconjugate Chemistry, 2011, 22, 679-689.	3.6	28
101	Contributions of Ordered Solvent to Long-Range DNA-Dendrimer Interactions. Biophysical Journal, 2011, 100, 356a-357a.	0.5	0
102	Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells. Optics Letters, 2011, 36, 912.	3.3	54
103	Nanoscale morphology of Type I collagen is altered in the Brtl mouse model of Osteogenesis Imperfecta. Journal of Structural Biology, 2011, 173, 146-152.	2.8	74
104	Effect of osteogenesis imperfecta mutations on free energy of collagen model peptides: A molecular dynamics simulation. Biophysical Chemistry, 2011, 156, 146-152.	2.8	8
105	The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers, 2011, 95, 182-193.	2.4	15
106	Free energy simulation to investigate the effect of amino acid sequence environment on the severity of osteogenesis imperfecta by glycine mutations in collagen. Biopolymers, 2011, 95, 401-409.	2.4	8
107	Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer–methotrexate conjugate as a potential anticancer agent. Bioorganic and Medicinal Chemistry, 2011, 19, 2557-2564.	3.0	59
108	Dual wavelength digital holography phase unwrapping by linear regression. Proceedings of SPIE, 2011, ,	0.8	3

#	Article	IF	CITATIONS
109	A Quantitative Assessment of Nanoparticleâ^'Ligand Distributions: Implications for Targeted Drug and Imaging Delivery in Dendrimer Conjugates. ACS Nano, 2010, 4, 657-670.	14.6	143
110	Isolation and Characterization of Dendrimers with Precise Numbers of Functional Groups. Chemistry - A European Journal, 2010, 16, 10675-10678.	3.3	36
111	Investigating the Interaction Between Folic Acid and Folate Binding Protein at the Single Molecule Level. Biophysical Journal, 2010, 98, 596a.	0.5	0
112	Microscopic Basis for the Mesoscopic Extensibility of Dendrimer-Compacted DNA. Biophysical Journal, 2010, 98, 834-842.	0.5	17
113	Type I Collagen Exists as a Distribution of Nanoscale Morphologies in Teeth, Bones, and Tendons. Langmuir, 2010, 26, 7349-7354.	3.5	64
114	Polycation-Induced Cell Membrane Permeability Does Not Enhance Cellular Uptake or Expression Efficiency of Delivered DNA. Molecular Pharmaceutics, 2010, 7, 2370-2370.	4.6	2
115	Effect of Mass Transport in the Synthesis of Partially Acetylated Dendrimer: Implications for Functional Ligandâ ^{~^} Nanoparticle Distributions. Macromolecules, 2010, 43, 6577-6587.	4.8	19
116	Parallelograms and Ladders: Polymorphic Solid-State Structures and Solution Equilibria of Cp*GeCl. Organometallics, 2010, 29, 5004-5009.	2.3	2
117	Origin of broad polydispersion in functionalized dendrimers and its effects on cancer-cell binding affinity. Physical Review E, 2010, 82, 036108.	2.1	9
118	The Mechanism of Polyplex Internalization into Cells: Testing the GM1/Caveolin-1 Lipid Raft Mediated Endocytosis Pathway. Molecular Pharmaceutics, 2010, 7, 267-279.	4.6	37
119	Distribution of type I collagen morphologies in bone: Relation to estrogen depletion. Bone, 2010, 46, 1349-1354.	2.9	70
120	Polycation-Induced Cell Membrane Permeability Does Not Enhance Cellular Uptake or Expression Efficiency of Delivered DNA. Molecular Pharmaceutics, 2010, 7, 870-883.	4.6	39
121	Câ^'H Activation of Alkanes, Alkenes, Alkynes, Arenes, and Ethers Using a Stannylene/Aryl Halide Mixture. Organometallics, 2010, 29, 5033-5039.	2.3	21
122	Solid-State NMR Reveals the Hydrophobic-Core Location of Poly(amidoamine) Dendrimers in Biomembranes. Journal of the American Chemical Society, 2010, 132, 8087-8097.	13.7	95
123	Development of a remanence measurement-based SQUID system with in-depth resolution for nanoparticle imaging. Physics in Medicine and Biology, 2009, 54, N177-N188.	3.0	21
124	Pulsed-laser creation and characterization of giant plasma membrane vesicles from cells. Journal of Biological Physics, 2009, 35, 279-295.	1.5	17
125	Nanotoxicology: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1, 353-359.	6.1	31
126	The Role of Ganglioside GM1 in Cellular Internalization Mechanisms of Poly(amidoamine) Dendrimers. Bioconjugate Chemistry, 2009, 20, 1503-1513.	3.6	68

#	Article	IF	CITATIONS
127	Cationic Poly(amidoamine) Dendrimer Induces Lysosomal Apoptotic Pathway at Therapeutically Relevant Concentrations. Biomacromolecules, 2009, 10, 3207-3214.	5.4	109
128	RGD Dendron Bodies; Synthetic Avidity Agents with Defined and Potentially Interchangeable Effector Sites That Can Substitute for Antibodies. Bioconjugate Chemistry, 2009, 20, 1853-1859.	3.6	36
129	Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes. Journal of Physical Chemistry B, 2009, 113, 11179-11185.	2.6	202
130	Stoichiometry and Structure of Poly(amidoamine) Dendrimerâ^'Lipid Complexes. ACS Nano, 2009, 3, 1886-1896.	14.6	87
131	Stoichiometries and Energetics of Cationic Nanoparticle-Membrane Complexes. Biophysical Journal, 2009, 96, 19a.	0.5	0
132	Silylene- and Germylene-Mediated Câ^'H Activation: Reaction with Alkanes, Ethers, and Amines. Organometallics, 2009, 28, 2744-2755.	2.3	30
133	Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. Journal of Physical Chemistry C, 2009, 113, 13593-13599.	3.1	267
134	Force Calculations for DNA-PAMAM Dendrimer Interactions from Molecular Dynamics Simulations. Biophysical Journal, 2009, 96, 366a.	0.5	0
135	Synthesis, Characterization, and <i>in Vitro</i> Testing of Superparamagnetic Iron Oxide Nanoparticles Targeted Using Folic Acid-Conjugated Dendrimers. ACS Nano, 2008, 2, 773-783.	14.6	163
136	Wide Varieties of Cationic Nanoparticles Induce Defects in Supported Lipid Bilayers. Nano Letters, 2008, 8, 420-424.	9.1	497
137	Poly(amidoamine) Dendrimers on Lipid Bilayers II: Effects of Bilayer Phase and Dendrimer Termination. Journal of Physical Chemistry B, 2008, 112, 9346-9353.	2.6	90
138	Poly(amidoamine) Dendrimers on Lipid Bilayers I: Free Energy and Conformation of Binding. Journal of Physical Chemistry B, 2008, 112, 9337-9345.	2.6	74
139	A Stannylene/Aryl Iodide Reagent for Allylic CH Activation and Double Bond Addition Chemistry. Organometallics, 2008, 27, 1041-1043.	2.3	24
140	Direct Formation of Propargyltin Compounds via Câ^'H Activation. Organometallics, 2008, 27, 2896-2897.	2.3	15
141	Interactions of Poly(amidoamine) Dendrimers with Survanta Lung Surfactant: The Importance of Lipid Domains. Langmuir, 2008, 24, 11003-11008.	3.5	35
142	The Implications of Stochastic Synthesis for the Conjugation of Functional Groups to Nanoparticles. Bioconjugate Chemistry, 2008, 19, 1748-1752.	3.6	48
143	Cell Plasma Membranes and Phase Transitions. , 2008, , 171-181.		6
144	Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face?. Accounts of Chemical Research, 2007, 40, 335-342.	15.6	492

#	Article	IF	CITATIONS
145	Design and Implementation of a Studio-Based General Chemistry Course. Journal of Chemical Education, 2007, 84, 265.	2.3	35
146	Closing the Gap between Interdisciplinary Research and Disciplinary Teaching. ACS Chemical Biology, 2007, 2, 518-520.	3.4	7
147	The bonding geometry of alkylsilanes on gold: Relation to surface pattern development and STM image contrast. Surface Science, 2007, 601, 1937-1943.	1.9	5
148	The Binding Avidity of a Nanoparticle-Based Multivalent Targeted Drug Delivery Platform. Chemistry and Biology, 2007, 14, 107-115.	6.0	521
149	Interaction of Polycationic Polymers with Supported Lipid Bilayers and Cells:  Nanoscale Hole Formation and Enhanced Membrane Permeability. Bioconjugate Chemistry, 2006, 17, 728-734.	3.6	623
150	HPLC analysis of functionalized poly(amidoamine) dendrimers and the interaction between a folate-dendrimer conjugate and folate binding protein. Analyst, The, 2006, 131, 842.	3.5	40
151	Syntheses of Ring-Fused Bâ^'N Heteroaromatic Compounds. Organometallics, 2006, 25, 513-518.	2.3	89
152	Haptotropic Migration from the Six- to the Five-Membered Ring of (3a,7a-Azaborindenyl)tricarbonylchromium Anion. Organometallics, 2006, 25, 3463-3467.	2.3	28
153	Tin-Mediated CH Activation and Cross-Coupling in a Single Flask. Organometallics, 2006, 25, 4738-4740.	2.3	33
154	Formation of Mixed Monolayers of Silsesquioxanes and Alkylsilanes on Gold. Langmuir, 2006, 22, 9619-9622.	3.5	8
155	Physical interactions of nanoparticles with biological membranes: The observation of nanoscale hole formation. Journal of Chemical Health and Safety, 2006, 13, 16-20.	2.1	31
156	Atomic Force Microscopy Study of Early Morphological Changes during Apoptosis. Langmuir, 2005, 21, 9280-9286.	3.5	97
157	Synthetic and Natural Polycationic Polymer Nanoparticles Interact Selectively with Fluid-Phase Domains of DMPC Lipid Bilayers. Langmuir, 2005, 21, 8588-8590.	3.5	128
158	Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78 in Lipid Bilayers. Biophysical Journal, 2005, 89, 4043-4050.	0.5	194
159	Lipid Bilayer Disruption by Polycationic Polymers:  The Roles of Size and Chemical Functional Group. Langmuir, 2005, 21, 10348-10354.	3.5	258
160	Monolayer Pattern Evolution via Substrate Strain-Mediated Spinodal Decomposition. Physical Review Letters, 2004, 93, 166104.	7.8	19
161	Simulated scanning tunneling microscopy images of three-dimensional clusters:H8Si8O12onSi(100)â^2A—1. Physical Review B, 2004, 70, .	3.2	10
162	Band alignment issues related to HfO2â^•SiO2â^•p-Si gate stacks. Journal of Applied Physics, 2004, 96, 7485-7491.	2.5	102

Mark M Banaszak Holl

#	Article	IF	CITATIONS
163	Deformability of poly(amidoamine) dendrimers. European Physical Journal E, 2004, 14, 7-16.	1.6	208
164	Valence and conduction band offsets of a ZrO2/SiOxNy/n-Si CMOS gate stack: A combined photoemission and inverse photoemission study. Physica Status Solidi (B): Basic Research, 2004, 241, 2246-2252.	1,5	56
165	Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chemistry and Physics of Lipids, 2004, 132, 3-14.	3.2	221
166	DNA-Directed Synthesis of Generation 7 and 5 PAMAM Dendrimer Nanoclusters. Nano Letters, 2004, 4, 391-397.	9.1	99
167	Nanoscale Probing of the Enamel Nanorod Surface Using Polyamidoamine Dendrimers. Langmuir, 2004, 20, 4168-4171.	3.5	35
168	Chemical Imaging of Terrace-Based Active Sites on Gold. Langmuir, 2004, 20, 2250-2256.	3.5	8
169	Dynamic in Situ Characterization of Organic Monolayer Formation via a Novel Substrate-Mediated Mechanism. Langmuir, 2004, 20, 1258-1268.	3.5	13
170	Octylgermane on Gold:Â Synthesis, Oxidation, and Pattern Formation. Langmuir, 2004, 20, 11422-11427.	3.5	2
171	Sequential Insertion of Formaldehyde and Carbon Monoxide into a Sulfide-Bridged Pdâ ^{~?} Ge Bond Followed by Reductive Elimination To Form a [1,3,2]Oxathiagermolan-4-one. Organometallics, 2004, 23, 2370-2375.	2.3	11
172	Oxidation of Alkylsilane-Based Monolayers on Gold. Langmuir, 2004, 20, 9636-9645.	3.5	11
173	Synthesis of a Digermane-Containing Tricylic Nonadecadienedione Incorporating an Equivalent of Ring-Opened THF. Inorganic Chemistry, 2004, 43, 7665-7670.	4.0	4
174	Insertion of SO2into a Sulfide-Bridged Mâ^'Ge Bond:Â Synthesis, Characterization, and Reactivity of theO-Germyl-S-sulfoxylate. Inorganic Chemistry, 2004, 43, 2057-2063.	4.0	12
175	A Novel MEA/AFM Platform for Measurement of Real-Time, Nanometric Morphological Alterations of Electrically Stimulated Neuroblastoma Cells. IEEE Transactions on Nanobioscience, 2004, 3, 111-117.	3.3	12
176	Interaction of Poly(amidoamine) Dendrimers with Supported Lipid Bilayers and Cells:  Hole Formation and the Relation to Transport. Bioconjugate Chemistry, 2004, 15, 774-782.	3.6	556
177	Variable Energy X-ray Photoemission Studies of Alkylsilane Based Monolayers on Gold. Journal of Physical Chemistry B, 2003, 107, 3177-3182.	2.6	22
178	The Case of the Disappearing Monolayer: Alkylsilane Monolayer Formation, Oxidation, and Subsequent Transparency to Scanning Tunneling Microscopy. ChemPhysChem, 2003, 4, 1111-1114.	2.1	8
179	The differential reactivity of octahydridosilsesquioxane on Si(100)-2×1 and Si(111)-7×7: a comparative experimental study. Ultramicroscopy, 2003, 97, 35-45.	1.9	5
180	Exploring Two Reactions of Ketones with Ge[CH(SiMe3)2]2:Â CH and OH Insertion. Organometallics, 2003, 22, 5054-5062.	2.3	12

#	Article	IF	CITATIONS
181	Câ^'H Activation of Ethers and Alkanes by Germyleneâ^'Aryl Halide Complexes. Journal of the American Chemical Society, 2003, 125, 8986-8987.	13.7	61
182	Germylene Reactions with Quinones Shed Light on Germylene Phenone Equilibria. Organometallics, 2003, 22, 3222-3229.	2.3	14
183	Germylene-Induced Hydrogenation of Benzophenone. Organometallics, 2003, 22, 4613-4615.	2.3	7
184	Reactions of Palladium Germylene Complexes:Â Formation of Sulfide Bridges. Inorganic Chemistry, 2003, 42, 7219-7226.	4.0	33
185	Interaction of Dendrimers (Artificial Proteins) with Biological Hydroxyapatite Crystals. Journal of Dental Research, 2003, 82, 443-448.	5.2	60
186	Soft x-ray photoemission studies of Hf oxidation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 106-109.	2.1	100
187	Reflection–absorption infrared investigation of hydrogenated silicon oxide generated by the thermal decomposition of H8Si8O12 clusters. Journal of Applied Physics, 2002, 91, 9043-9048.	2.5	3
188	Effect of Surface Reconstruction on Molecular Chemisorption:  A Scanning Tunneling Microscopy Study of H8Si8O12 Clusters on Au(111) 23×â^š3. Langmuir, 2002, 18, 8116-8122.	3.5	11
189	Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Coreâ^'Shell Tecto(dendrimers) Using Carbon Nanoprobes. Langmuir, 2002, 18, 3127-3133.	3.5	65
190	Quick, Efficient Conversion of Phenones to Conjugated Trienes via Germylene Cycloaddition. Organometallics, 2002, 21, 457-459.	2.3	20
191	Synthesis and Reactivity of a Novel Palladium Germylene System. Organometallics, 2002, 21, 5373-5381.	2.3	62
192	Time-Resolved Spectroscopic Studies of B12 Coenzymes:  A Comparison of the Primary Photolysis Mechanism in Methyl-, Ethyl-, n-Propyl-, and 5â€~-Deoxyadenosylcobalamin. Journal of the American Chemical Society, 2002, 124, 434-441.	13.7	93
193	Formation of Alkylsilane-Based Monolayers on Gold. Journal of the American Chemical Society, 2002, 124, 6800-6801.	13.7	46
194	Investigation of Hydridosilsesquioxane-Based Silicon Oxide Deposition on Si(111)-7 × 7. Langmuir, 2002, 18, 6233-6241.	3.5	1
195	Tapping Mode Atomic Force Microscopy Investigation of Poly(amidoamine) Dendrimers:Â Effects of Substrate and pH on Dendrimer Deformation. Langmuir, 2001, 17, 2768-2773.	3.5	114
196	Intermolecular Câ^'H Insertions and Cyclization Reactions Involving a Stable Germylene. Journal of the American Chemical Society, 2001, 123, 982-983.	13.7	34
197	Formation of Mixed Layers Derived from Functional Silicon Oxide Clusters on Gold. Langmuir, 2001, 17, 7879-7885.	3.5	10
198	Self-limiting chemical vapor deposition of an ultra-thin silicon oxide film using tri-(tert-butoxy)silanol. Thin Solid Films, 2001, 397, 78-82.	1.8	5

#	Article	IF	CITATIONS
199	Infrared and density-functional-theory study of spherosiloxane-based model silicon/silicon oxide interfaces. Physical Review B, 2001, 64, .	3.2	11
200	Determination of Spherosiloxane Cluster Bonding to Si(100)-2×1by Scanning Tunneling Microscopy. Physical Review Letters, 2000, 85, 602-605.	7.8	20
201	The Dynamic Nature of Hydridosilsesquioxane Clusters on Gold Surfaces. Langmuir, 2000, 16, 8396-8403.	3.5	16
202	Photochemistry of Transition Metal Germylenes and Metallacycles. Organometallics, 2000, 19, 1186-1189.	2.3	23
203	Nucleation of chemical vapor deposited silicon nitride on silicon dioxide. Applied Physics Letters, 1999, 74, 1830-1832.	3.3	7
204	The reaction of H8Si8O12 with a chromium oxide surface: a model for stainless steel surface modification. Applied Organometallic Chemistry, 1999, 13, 279-285.	3.5	6
205	Chemisorption of H8Si8O12Clusters on Gold:Â A Novel Siâ^'H Bond Activation. Journal of the American Chemical Society, 1999, 121, 3232-3233.	13.7	34
206	X-ray Crystallographic and Theoretical Comparison of Ge[2,4,6-(CF3)3C6H2]2and Ge[N(SiMe3)2]2as Ligands in (Ph3P)2NiGeX2Complexes. Organometallics, 1999, 18, 1547-1552.	2.3	35
207	Synthesis and Characterization of a Soluble, Highly Branched Organo-Siliconâ^'Nitride Polymer. Chemistry of Materials, 1999, 11, 154-157.	6.7	7
208	H8Si8O12 Clusters on Si(100)-2×l and Gold: A Comparative Infrared Spectroscopic Study. Materials Research Society Symposia Proceedings, 1999, 567, 543.	0.1	2
209	Activation of Arylnitroso Substrates on a Platinumâ^'Germylene Complex Facilitating the Formation of New Nâ^'C and Nâ^'S Bonds. Journal of the American Chemical Society, 1998, 120, 7484-7492.	13.7	28
210	Active Role of a Germylene Ligand in Promoting Reactions of Platinum Complexes with Oxygen and Sulfur Dioxide. Inorganic Chemistry, 1998, 37, 6461-6469.	4.0	29
211	Extra-atomic Relaxation and Core-Level Binding Energy Shifts at Silicon/Silicon Oxide Interfaces:Â Effects of Cluster Size on Physical Models. Journal of Physical Chemistry B, 1998, 102, 3930-3935.	2.6	12
212	o-(Trifluoromethyl)aryl Interactions and Stabilization in Hypervalent Germanium Compounds. Organometallics, 1998, 17, 5166-5171.	2.3	28
213	Infrared Study of H10Si10O15Chemisorbed on a Si(100)-2×1 Surface. Inorganic Chemistry, 1998, 37, 6014-6017.	4.0	9
214	Surface Infrared Studies of Silicon/Silicon Oxide Interfaces Derived from Hydridosilsesquioxane Clusters. Journal of the American Chemical Society, 1998, 120, 7776-7782.	13.7	32
215	The role of second-neighbor effects in photoemission: Are silicon surfaces and interfaces special?. Applied Physics Letters, 1998, 72, 46-48.	3.3	16
216	An infrared study of H8Si8O12 cluster adsorption on Si(100) surfaces. Journal of Chemical Physics, 1998, 108, 8680-8688.	3.0	23

#	Article	IF	CITATIONS
217	A New Model Silicon/Silicon Oxide Interface Synthesized fromH10Si10O15andSi(100)-2×1. Japanese Journal of Applied Physics, 1997, 36, 1622-1626.	1.5	15
218	The role of extra-atomic relaxation in determining Si 2p binding energy shifts at silicon/silicon oxide interfaces. Journal of Applied Physics, 1997, 82, 2298-2307.	2.5	44
219	Synthesis and Characterization of a Novel Diarylgermylene Containing Electron-Withdrawing Groups. Organometallics, 1997, 16, 2743-2745.	2.3	61
220	Transition Metal Germylene Complexes as Hydrogenation Catalysts: The Synthesis of a Rare Bis(amino)germane. Angewandte Chemie International Edition in English, 1997, 36, 496-498.	4.4	59
221	Germylenübergangsmetallkomplexe als Hydrierkatalysatoren: Synthese eines Bis(amino)germans. Angewandte Chemie, 1997, 109, 516-518.	2.0	13
222	Intermediates in the Catalytic Dehydrogenative Coupling of Arylgermanes. Chemistry - A European Journal, 1997, 3, 1793-1796.	3.3	36
223	Construction of Solid/Solid Interface Models Using Modular Chemistry: The Si/SiO2 Interface. , 1997, , 451-460.		0
224	Conversion of [(tBuCH2)2TaN]5 to Cubic TaN:  Related Syntheses, EHMO Calculations, and MAS and Spin Echo 15N NMR Spectroscopies. Chemistry of Materials, 1996, 8, 2468-2480.	6.7	26
225	Chloroethane Physisorbed on Hydrogenated Si(111): A Test System for the Evaluation of Core Level XPS Assignment Rules at Si/SiO2 Interfaces. Materials Research Society Symposia Proceedings, 1996, 446, 15.	0.1	2
226	Soft X-ray Si 2p core-level spectra of H ₈ Si ₈ O ₁₂ physisorbed on Si(111)-H: additional experimental evidence regarding the binding energy shift of the HSiO ₃ fragment. Materials Research Society Symposia Proceedings, 1996, 446, 241.	0.1	4
227	Polyamidoimidonitride Clusters of Zirconium - a molecular orbital study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1996, 622, 392-400.	1.2	11
228	Photoemission assignments of HxSiO4â^'x fragments at the Si/SiOx interface. Applied Physics Letters, 1996, 68, 1081-1083.	3.3	8
229	Si 2pcore-level shifts at the Si(100)-SiO2interface: An experimental study. Physical Review B, 1996, 54, 7686-7689.	3.2	24
230	An inquiry concerning the principles of Si 2p core-level photoemission shift assignments at the Si/SiO2 interface. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 2824.	1.6	39
231	Reversible Insertion Reactions of a Platinum Germylene Complex. Organometallics, 1995, 14, 5008-5010.	2.3	73
232	Ligand Substitution at 19-Electron Centers and the Indenyl Effect in Organometallic Radicals. Electrocatalytic CO Substitution in (cyclopentadienyl)Fe(CO)3+ and (indenyl)Fe(CO)3+. Organometallics, 1995, 14, 512-523.	2.3	56
233	Coreâ€level photoemission and the structure of the Si/SiO2interface: A reappraisal. Applied Physics Letters, 1994, 65, 1097-1099.	3.3	82
234	Ligand substitution at 19-electron organometallic centers. Electrocatalytic CO substitution reactions of (methylcyclopentadienyl)Mn(CO)2NO+ and (indenyl)Mn(CO)2NO+. Inorganica Chimica Acta, 1994, 226, 53-60.	2.4	20

#	Article	IF	CITATIONS
235	Surface reactivity of alkylgold(I) complexes: substrate-selective chemical vapor deposition of gold from RAuP(CH3)3 (R = CH2CH3, CH3) at remarkably low temperatures. Inorganic Chemistry, 1994, 33, 510-517.	4.0	27
236	Synthetic Control of Solid/Solid Interfaces: Analysis of Three New Silicon/Silicon Oxide Interfaces by Soft X-ray Photoemission. Journal of the American Chemical Society, 1994, 116, 11819-11826.	13.7	41
237	Lowâ€ŧemperature selectiveâ€area deposition of metals: Chemical vapor deposition of gold from ethyl(trimethylphosphine)gold(I). Applied Physics Letters, 1993, 62, 1475-1477.	3.3	12
238	Si/SiO2interface: New structures and well-defined model systems. Physical Review Letters, 1993, 71, 2441-2444.	7.8	102
239	Polyamidoimidonitride clusters of zirconium. Journal of the American Chemical Society, 1992, 114, 3854-3858.	13.7	54
240	Ammonolysis of tantalum alkyls: formation of cubic tantalum nitride and a trimeric nitride, [Cp*MeTaN]3 tris[(.eta.5-pentamethylcyclopentadienyl)(methyl)nitridotantalum]. Inorganic Chemistry, 1990, 29, 1518-1526.	4.0	50
241	The ladder structure of [(tert-BuCH2)2TaN]5.cntdot.NH3.cntdot.2C7H8 and its relationship to cubic tantalum nitride. Journal of the American Chemical Society, 1990, 112, 7989-7994.	13.7	85
242	Synthesis and reactivity of a neutral tungsten(0) alkyl complex. Insertion of CO2 into the W-CH3 bond of trans,trans-W(CH3)(CO)2(NO)(PPh3)2 and the structural characterization of trans-W(.eta.2-O2CCH3)(CO)(NO)(PPh3)2. Organometallics, 1987, 6, 1522-1527.	2.3	11
243	Dendrimer Synthesis and Functionalization by Click Chemistry for Biomedical Applications. , 0, , 177-193.		8
244	Nanoparticle — Membrane Interactions: Mechanism for Enhanced Permeability. , 0, , 289-329.		0