
Masanori Yamasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Background Negates Improvements in Rice Flour Characteristics and Food Processing Properties Caused by a Mutant Allele of the PDIL1-1 Seed Storage Protein Gene. Rice, 2022, 15, 13.	1.7	5
2	ldentification of a unique allele in the quantitative trait locus for crown root number in <i>japonica</i> rice from Japan using genome-wide association studies. Breeding Science, 2022, 72, 222-231.	0.9	4
3	Development of an Aus-Derived Nested Association Mapping (Aus-NAM) Population in Rice. Plants, 2021, 10, 1255.	1.6	23
4	Coupling day length data and genomic prediction tools for predicting time-related traits under complex scenarios. Scientific Reports, 2020, 10, 13382.	1.6	9
5	Genetic and epistatic effects for grain quality and yield of three grain-size QTLs identified in brewing rice (Oryza sativa L.) Molecular Breeding, 2020, 40, 1.	1.0	6
6	Landraces of temperate japonica rice have superior alleles for improving culm strength associated with lodging resistance. Scientific Reports, 2020, 10, 19855.	1.6	11
7	Predicting Rice Heading Date Using an Integrated Approach Combining a Machine Learning Method and a Crop Growth Model. Frontiers in Genetics, 2020, 11, 599510.	1.1	10
8	Choosing the optimal population for a genomeâ€wide association study: A simulation of wholeâ€genome sequences from rice. Plant Genome, 2020, 13, e20005.	1.6	9
9	Predicting biomass of rice with intermediate traits: Modeling method combining crop growth models and genomic prediction models. PLoS ONE, 2020, 15, e0233951.	1.1	14
10	Title is missing!. , 2020, 15, e0233951.		0
11	Title is missing!. , 2020, 15, e0233951.		0
12	Title is missing!. , 2020, 15, e0233951.		0
13	Title is missing!. , 2020, 15, e0233951.		0
14	Title is missing!. , 2020, 15, e0233951.		0
15	Title is missing!. , 2020, 15, e0233951.		0
16	Title is missing!. , 2020, 15, e0233951.		0
17	QTL analysis of resistance to bacterial wilt caused by <i>Ralstonia solanacearum</i> in potato. Breeding Science, 2019, 69, 592-600.	0.9	20
18	Validation of a quantitative trait locus for the white-core expression rate of grain on chromosome 6 in a brewing rice cultivar and development of DNA markers for marker-assisted selection. Breeding Science, 2019, 69, 401-409.	0.9	6

MASANORI YAMASAKI

#	Article	IF	CITATIONS
19	Whole genome sequencing data of Oryza sativa L. cv. Takanari. Data in Brief, 2019, 27, 104546.	0.5	Ο
20	Genetic and phenotypic assessment of sugar beet (<i>Beta vulgaris</i> L. subsp.) Tj ETQq0 0 0 rgBT Science, 2019, 69, 255-265.	Overlock 1 0.9	0 Tf 50 707 T 6
21	A novel Rice QTL qOPW11 Associated with Panicle Weight Affects Panicle and Plant Architecture. Rice, 2018, 11, 53.	1.7	14
22	Description of grain weight distribution leading to genomic selection for grain-filling characteristics in rice. PLoS ONE, 2018, 13, e0207627.	1.1	25
23	Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari. Breeding Science, 2018, 68, 210-218.	0.9	19
24	Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science, 2018, 361, 181-186.	6.0	188
25	Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1650-1656.	0.6	2
26	Genetic dissection of grain traits in Yamadanishiki, an excellent sake-brewing rice cultivar. Theoretical and Applied Genetics, 2017, 130, 2567-2585.	1.8	13
27	Genetic Tracing of Jatropha curcas L. from Its Mesoamerican Origin to the World. Frontiers in Plant Science, 2017, 8, 1539.	1.7	19
28	Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics, 2016, 48, 927-934.	9.4	600
29	Natural variation in the glucose content of dilute sulfuric acid–pretreated rice straw liquid hydrolysates: implications for bioethanol production. Bioscience, Biotechnology and Biochemistry, 2016, 80, 863-869.	0.6	4
30	Uncovering a Nuisance Influence of a Phenological Trait of Plants Using a Nonlinear Structural Equation: Application to Days to Heading and Culm Length in Asian Cultivated Rice (Oryza Sativa L.). PLoS ONE, 2016, 11, e0148609.	1.1	8
31	Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops. PLoS ONE, 2016, 11, e0153945.	1.1	17
32	Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 76-81.	3.3	236
33	Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa) Tj ETQq1	1 0.784314 1.8	rgBT /Overlo
34	Natural Variation in the Flag Leaf Morphology of Rice Due to a Mutation of the <i>NARROW LEAF 1</i> Gene in <i>Oryza sativa</i> L Genetics, 2015, 201, 795-808.	1.2	20
35	Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR. PLoS ONE, 2015, 10, e0128417.	1.1	26
36	Glucose content in the liquid hydrolysate after dilute acid pretreatment is affected by the starch content in rice straw. Bioresource Technology, 2013, 149, 520-524.	4.8	16

MASANORI YAMASAKI

#	Article	IF	CITATIONS
37	OsLG1 regulates a closed panicle trait in domesticated rice. Nature Genetics, 2013, 45, 462-465.	9.4	181
38	Development of INDEL markers to discriminate all genome types rapidly in the genus <i>Oryza</i> . Breeding Science, 2013, 63, 246-254.	0.9	42
39	Population structure in Japanese rice population. Breeding Science, 2013, 63, 49-57.	0.9	31
40	Diversity and population structure of black soybean landraces originating from Tanba and neighboring regions. Breeding Science, 2012, 61, 593-601.	0.9	11
41	Variation in Biomass Properties among Rice Diverse Cultivars. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1603-1605.	0.6	18
42	Artificial selection for a green revolution gene during <i>japonica</i> rice domestication. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11034-11039.	3.3	179
43	Allelic interaction at seed-shattering loci in the genetic backgrounds of wild and cultivated rice species. Genes and Genetic Systems, 2010, 85, 265-271.	0.2	37
44	Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biological Control, 2010, 55, 85-91.	1.4	25
45	Population structure of wild wheat Dâ€genome progenitor <i>Aegilops tauschii</i> Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Molecular Ecology, 2010, 19, 999-1013.	2.0	115
46	DNAAlignEditor: DNA alignment editor tool. BMC Bioinformatics, 2008, 9, 154.	1.2	11
47	Empirical Analysis of Selection Screens for Domestication and Improvement Loci in Maize by Extended DNA Sequencing. Plant Genome, 2008, 1, .	1.6	5
48	Genomic Screening for Artificial Selection during Domestication and Improvement in Maize. Annals of Botany, 2007, 100, 967-973.	1.4	70
49	A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38, 203-208.	9.4	3,622
50	A Large-Scale Screen for Artificial Selection in Maize Identifies Candidate Agronomic Loci for Domestication and Crop Improvement. Plant Cell, 2005, 17, 2859-2872.	3.1	234
51	The Effects of Artificial Selection on the Maize Genome. Science, 2005, 308, 1310-1314.	6.0	742
52	Title is missing!. Molecular Breeding, 2003, 12, 133-143.	1.0	55
53	Mapping of Quantitative Trait Loci of Ovicidal Response to Brown Planthopper (Nilaparvata lugens) Tj ETQq1 1 C).784314 0.9	rgBT_/Overloc
			_

⁵⁴ Quantitative Trait Locus Mapping of Ovicidal Responsein Rice (Oryza sativa L.) against Whitebacked Planthopper (Sogatella furcifera HorvÃ_jth). Crop Science, 1999, 39, 1178-1183.

0.8 33

#	Article	IF	CITATIONS
55	A novel index to evaluate resource allocation pattern in panicles in Japanese rice cultivars. Plant Production Science, 0, , 1-16.	0.9	0