
Johanna Chiche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/132139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EVTâ€701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent antiâ€ŧumor activity in models of solid cancers. Pharmacology Research and Perspectives, 2021, 9, e00854.	2.4	7
2	GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell, 2019, 36, 268-287.e10.	16.8	34
3	Caspase 1/11 Deficiency or Pharmacological Inhibition Mitigates Psoriasis-Like Phenotype inÂMice. Journal of Investigative Dermatology, 2019, 139, 1306-1317.	0.7	16
4	GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors. Cell Metabolism, 2019, 29, 1243-1257.e10.	16.2	56
5	Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging. Nature Biomedical Engineering, 2018, 2, 85-94.	22.5	44
6	Low-Protein Diet Induces IRE1α-Dependent Anticancer Immunosurveillance. Cell Metabolism, 2018, 27, 828-842.e7.	16.2	99
7	Metabolic Reprogramming of Non-Hodgkin's B-Cell Lymphomas and Potential Therapeutic Strategies. Frontiers in Oncology, 2018, 8, 556.	2.8	67
8	Dissecting the Process of Activation of Cancer-promoting Zinc-requiring Ectoenzymes by Zinc Metalation Mediated by ZNT Transporters. Journal of Biological Chemistry, 2017, 292, 2159-2173.	3.4	29
9	Parkin-Independent Mitophagy Controls Chemotherapeutic Response in Cancer Cells. Cell Reports, 2017, 20, 2846-2859.	6.4	217
10	Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood, 2016, 128, 253-264.	1.4	320
11	Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene, 2016, 35, 261-268.	5.9	54
12	Low carbohydrate diet prevents Mcl-1-mediated resistance to BH3-mimetics. Oncotarget, 2016, 7, 73270-73279.	1.8	1
13	GAPDH enhances the aggressiveness and the vascularization of non-Hodgkin's B lymphomas via NF-κB-dependent induction of HIF-1α. Leukemia, 2015, 29, 1163-1176.	7.2	55
14	Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 689-721.	5.2	93
15	Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 2013, 13, 611-623.	28.4	530
16	Pharmacological inhibition of carbonic anhydrase XII interferes with cell proliferation and induces cell apoptosis in T-cell lymphomas. Cancer Letters, 2013, 333, 76-88.	7.2	47
17	Tumor hypoxia and metabolism – Towards novel anticancer approaches. Annales D'Endocrinologie, 2013, 74, 111-114.	1.4	26
18	Response of CAIX and CAXII to in vitro re-oxygenation and clinical significance of the combined expression in NSCLC patients. Lung Cancer, 2013, 82, 16-23.	2.0	20

JOHANNA CHICHE

#	Article	IF	CITATIONS
19	GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death and Differentiation, 2013, 20, 1043-1054.	11.2	50
20	Quantitative <i>In Vivo</i> Characterization of Intracellular and Extracellular pH Profiles in Heterogeneous Tumors: A Novel Method Enabling Multiparametric pH Analysis. Cancer Research, 2013, 73, 4616-4628.	0.9	44
21	Correction: Quantitative In Vivo Characterization of Intracellular and Extracellular pH Profiles in Heterogeneous Tumors: A Novel Method Enabling Multiparametric pH Analysis. Cancer Research, 2013, 73, 5845-5845.	0.9	1
22	Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis. Frontiers in Oncology, 2013, 2, 199.	2.8	61
23	Caloric restriction modulates Mcl-1 expression and sensitizes lymphomas to BH3 mimetic in mice. Blood, 2013, 122, 2402-2411.	1.4	45
24	Hypoxia Signaling, Phi Regulation & Tumor Metabolism. Novel Therapeutic Approaches. Annals of Oncology, 2013, 24, i7.	1.2	0
25	Combination of glycolysis inhibition with chemotherapy results in an antitumor immune response. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20071-20076.	7.1	87
26	<i>In vivo</i> pH in metabolicâ€defective Rasâ€transformed fibroblast tumors: Key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. International Journal of Cancer, 2012, 130, 1511-1520.	5.1	97
27	Abstract 3225: Growth inhibition of glycolytic tumors by targeting basigin/lactate-H+ symporters (MCTs): Metformin sensitizes MCT inhibition. Cancer Research, 2012, 72, 3225-3225.	0.9	2
28	Targeting Hypoxic Tumor Cell Viability with Carbohydrate-Based Carbonic Anhydrase IX and XII Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 6905-6918.	6.4	113
29	pH control mechanisms of tumor survival and growth. Journal of Cellular Physiology, 2011, 226, 299-308.	4.1	298
30	CD147 subunit of lactate/H ⁺ symporters MCT1 and hypoxia-inducible MCT4 is critical for energetics and growth of glycolytic tumors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16663-16668.	7.1	370
31	Hypoxic enlarged mitochondria protect cancer cells from apoptotic stimuli. Journal of Cellular Physiology, 2010, 222, 648-657.	4.1	99
32	Membrane-bound carbonic anhydrases are key pH regulators controlling tumor growth and cell migration. Advances in Enzyme Regulation, 2010, 50, 20-33.	2.6	57
33	Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. Journal of Cellular and Molecular Medicine, 2010, 14, 771-794.	3.6	536
34	328 Tumour metabolic adaptation to hypoxic and acidic stress. European Journal of Cancer, Supplement, 2010, 8, 86.	2.2	1
35	Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains. Molecular and Cellular Biology, 2009, 29, 2570-2581.	2.3	1,228
36	Hypoxia-Inducible Carbonic Anhydrase IX and XII Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH. Cancer Research, 2009, 69, 358-368.	0.9	644

JOHANNA CHICHE

#	Article	IF	CITATIONS
37	6 Hypoxia signalling, metabolism and cancer. European Journal of Cancer, Supplement, 2009, 7, 4.	2.2	Ο
38	Hypoxia signalling controls metabolic demand. Current Opinion in Cell Biology, 2007, 19, 223-229.	5.4	279
39	Hypoxia and cancer. Journal of Molecular Medicine, 2007, 85, 1301-1307.	3.9	617