Shaobo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321297/publications.pdf

Version: 2024-02-01

567281 713466 1,170 21 15 21 citations h-index g-index papers 25 25 25 933 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-PB pathways. Oncogene, 2020, 39, 428-442.	5.9	223
2	Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene, 2018, 37, 4239-4259.	5.9	202
3	EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3. Molecular Cancer, 2022, 21, 16.	19.2	115
4	Glioma exosomes mediate the expansion and function of myeloidâ€derived suppressor cells through microRNAâ€29a/ <i>Hbp1</i> and microRNAâ€92a/ <i> Prkar1a</i> pathways. International Journal of Cancer, 2019, 144, 3111-3126.	5.1	107
5	Hypoxic glioma-derived exosomes promote M2-like macrophage polarization by enhancing autophagy induction. Cell Death and Disease, 2021, 12, 373.	6.3	93
6	Transfer of MicroRNA via Macrophage-Derived Extracellular Vesicles Promotes Proneural-to-Mesenchymal Transition in Glioma Stem Cells. Cancer Immunology Research, 2020, 8, 966-981.	3.4	55
7	Exosomal miR-1246 from glioma patient body fluids drives the differentiation and activation of myeloid-derived suppressor cells. Molecular Therapy, 2021, 29, 3449-3464.	8.2	47
8	Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation. Journal of Experimental and Clinical Cancer Research, 2020, 39, 59.	8.6	41
9	Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death and Disease, 2020, 11, 168.	6.3	40
10	MicroRNA-29a-3p delivery via exosomes derived from engineered human mesenchymal stem cells exerts tumour suppressive effects by inhibiting migration and vasculogenic mimicry in glioma. Aging, 2021, 13, 5055-5068.	3.1	37
11	The dual role of glioma exosomal microRNAs: glioma eliminates tumor suppressor miR-1298-5p via exosomes to promote immunosuppressive effects of MDSCs. Cell Death and Disease, 2022, 13, 426.	6.3	32
12	Exosomes derived from hypoxic glioma deliver miR-1246 and miR-10b-5p to normoxic glioma cells to promote migration and invasion. Laboratory Investigation, 2021, 101, 612-624.	3.7	28
13	The N6-Methyladenosine-Modified Pseudogene HSPA7 Correlates With the Tumor Microenvironment and Predicts the Response to Immune Checkpoint Therapy in Glioblastoma. Frontiers in Immunology, 2021, 12, 653711.	4.8	25
14	SPI1-inducedÂdownregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner. Molecular Therapy - Nucleic Acids, 2022, 27, 699-717.	5.1	23
15	Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nature Communications, 2021, 12, 3005.	12.8	22
16	Cell surface GRP78 regulates BACE2 via lysosome-dependent manner to maintain mesenchymal phenotype of glioma stem cells. Journal of Experimental and Clinical Cancer Research, 2021, 40, 20.	8.6	17
17	A Comprehensive Analysis of METTL1 to Immunity and Stemness in Pan-Cancer. Frontiers in Immunology, 2022, 13, 795240.	4.8	15
18	TGFβ1â€induced betaâ€site APPâ€cleaving enzyme 2 upregulation promotes tumorigenesis through the NFâ€₽B signalling pathway in human gliomas. Molecular Oncology, 2020, 14, 407-425.	4.6	14

#	Article	IF	CITATIONS
19	miRâ€3184â€3p enriched in cerebrospinal fluid exosomes contributes to progression of glioma and promotes M2â€ike macrophage polarization. Cancer Science, 2022, 113, 2668-2680.	3.9	13
20	The Non-N6-Methyladenosine Epitranscriptome Patterns and Characteristics of Tumor Microenvironment Infiltration and Mesenchymal Transition in Glioblastoma. Frontiers in Immunology, 2021, 12, 809808.	4.8	11
21	Comprehensive Analysis of the Tumor Immune Microenvironment Landscape in Glioblastoma Reveals Tumor Heterogeneity and Implications for Prognosis and Immunotherapy. Frontiers in Immunology, 2022, 13, 820673.	4.8	10