Linghao Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1321007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving removal rate and efficiency of As(V) by sulfide from strongly acidic wastewater in a modified photochemical reactor. Environmental Technology (United Kingdom), 2022, 43, 2329-2341.	2.2	1
2	Calcium sulfide-organosilicon complex for sustained release of H2S in strongly acidic wastewater: Synthesis, mechanism and efficiency. Journal of Hazardous Materials, 2022, 421, 126745.	12.4	14
3	The Recycling of Acid Wastewater with High Concentrations of Organic Matter: Recovery of H2SO4 and Preparation of Activated Carbon. Water (Switzerland), 2022, 14, 183.	2.7	3
4	Clean and effective removal of Cl(-I) from strongly acidic wastewater by PbO2. Journal of Environmental Sciences, 2022, 120, 1-8.	6.1	5
5	A review on the removal of Cl(-I) with high concentration from industrial wastewater: Approaches and mechanisms. Science of the Total Environment, 2022, 824, 153909.	8.0	23
6	Reductive Removal and Recovery of As(V) and As(III) from Strongly Acidic Wastewater by a UV/Formic Acid Process. Environmental Science & Technology, 2022, 56, 9732-9743.	10.0	12
7	H2S release rate strongly affects particle size and settling performance of metal sulfides in acidic wastewater: The role of homogeneous and heterogeneous nucleation. Journal of Hazardous Materials, 2022, 438, 129484.	12.4	9
8	Removal of Cl(-I) from strongly acidic wastewater containing Cu(II) by complexation-precipitation using thiourea: Efficiency enhancement by ascorbic acid. Journal of Hazardous Materials, 2021, 402, 123836.	12.4	18
9	A novel precipitant for the selective removal of fluoride ion from strongly acidic wastewater: Synthesis, efficiency, and mechanism. Journal of Hazardous Materials, 2021, 403, 124039.	12.4	20
10	Sulfate radical-based removal of chloride ion from strongly acidic wastewater: Kinetics and mechanism. Journal of Hazardous Materials, 2021, 410, 124540.	12.4	27
11	Hydrophilicity/hydrophobicity of metal sulfide particles as a determinator of aggregation performance in wastewater. Journal of Water Process Engineering, 2021, 40, 101900.	5.6	10
12	Removal of Ni(II) from strongly acidic wastewater by chelating precipitation and recovery of NiO from the precipitates. Journal of Environmental Sciences, 2021, 104, 365-375.	6.1	16
13	Photo-induced dissolution of Bi2O3 during photocatalysis reactions: Mechanisms and inhibition method. Journal of Hazardous Materials, 2021, 412, 125267.	12.4	23
14	Dynamic flow and pollution of antimony from polyethylene terephthalate (PET) fibers in China. Science of the Total Environment, 2021, 771, 144643.	8.0	39
15	Recovery of Re(VII) from strongly acidic wastewater using sulphide: Acceleration by UV irradiation and the underlying mechanism. Journal of Hazardous Materials, 2021, 416, 126233.	12.4	12
16	Chemical solidification/stabilization of arsenic sulfide and oxide mixed wastes using elemental sulfur: Efficiencies, mechanisms and long-term stabilization enhancement by dicyclopentadiene. Journal of Hazardous Materials, 2021, 419, 126390.	12.4	4
17	Specific H ₂ S Release from Thiosulfate Promoted by UV Irradiation for Removal of Arsenic and Heavy Metals from Strongly Acidic Wastewater. Environmental Science & Technology, 2020, 54, 14076-14084.	10.0	33
18	Removal of Cl(â^'l) from strongly acidic wastewater using NaBiO3: A process of simultaneous oxidation and precipitation. Desalination, 2020, 491, 114566.	8.2	10

Linghao Kong

#	Article	IF	CITATIONS
19	Influences of Particles and Aquatic Colloids on the Oxidation of Sb(III) in Natural Water. ACS Earth and Space Chemistry, 2020, 4, 661-671.	2.7	17
20	UV-Improved Removal of Chloride Ions from Strongly Acidic Wastewater Using Bi ₂ O ₃ : Efficiency Enhancement and Mechanisms. Environmental Science & Technology, 2019, 53, 10371-10378.	10.0	30
21	UV light irradiation improves the aggregation and settling performance of metal sulfide particles in strongly acidic wastewater. Water Research, 2019, 163, 114860.	11.3	22
22	The mechanism for promoted oxygenation of V(IV) by goethite: Positive effect of surface hydroxyl groups. Journal of Hazardous Materials, 2019, 369, 254-260.	12.4	7
23	Removal of Chloride Ions from Strongly Acidic Wastewater Using Cu(0)/Cu(II): Efficiency Enhancement by UV Irradiation and the Mechanism for Chloride Ions Removal. Environmental Science & Technology, 2019, 53, 383-389.	10.0	36
24	Mechanism for Photopromoted Release of Vanadium from Vanadium Titano-Magnetite. Environmental Science & Technology, 2018, 52, 1954-1962.	10.0	12
25	Removal of Arsenic from Strongly Acidic Wastewater Using Phosphorus Pentasulfide As Precipitant: UV-Light Promoted Sulfuration Reaction and Particle Aggregation. Environmental Science & Technology, 2018, 52, 4794-4801.	10.0	46
26	Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Science of the Total Environment, 2018, 610-611, 167-174.	8.0	112
27	UV-Light-Induced Aggregation of Arsenic and Metal Sulfide Particles in Acidic Wastewater: The Role of Free Radicals. Environmental Science & Technology, 2018, 52, 10719-10727.	10.0	28
28	Mechanisms of UV-Light Promoted Removal of As(V) by Sulfide from Strongly Acidic Wastewater. Environmental Science & Technology, 2017, 51, 12583-12591.	10.0	42
29	Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes. Environmental Science & Technology, 2016, 50, 6974-6982.	10.0	63
30	Adsorption of antimony on kaolinite as a function of time, pH, HA and competitive anions. Environmental Earth Sciences, 2016, 75, 1.	2.7	30
31	Mechanisms of Sb(III) Oxidation by Pyrite-Induced Hydroxyl Radicals and Hydrogen Peroxide. Environmental Science & Technology, 2015, 49, 3499-3505.	10.0	144
32	Photopromoted oxidative dissolution of stibnite. Applied Geochemistry, 2015, 61, 53-61.	3.0	44
33	Kinetics and Mechanism of Photopromoted Oxidative Dissolution of Antimony Trioxide. Environmental Science & Technology, 2014, 48, 14266-14272.	10.0	53