Hugh P Possingham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1319801/publications.pdf

Version: 2024-02-01

703 papers

60,245 citations

123 h-index 196 g-index

745 all docs

745 docs citations

times ranked

745

40063 citing authors

#	Article	IF	CITATIONS
1	An objectiveâ€based prioritization approach to support trophic complexity through ecological restoration species mixes. Journal of Applied Ecology, 2022, 59, 394-407.	4.0	9
2	The costs and benefits of restoring a continent's terrestrial ecosystems. Journal of Applied Ecology, 2022, 59, 408-419.	4.0	16
3	The impacts of land use change on flood protection services among multiple beneficiaries. Science of the Total Environment, 2022, 806, 150577.	8.0	18
4	Trade-offs between efficiency, equality and equity in restoration for flood protection. Environmental Research Letters, 2022, 17, 014001.	5.2	8
5	An introduction to decision science for conservation. Conservation Biology, 2022, 36, .	4.7	45
6	Predicting the optimal amount of time to spend learning before designating protected habitat for threatened species. Methods in Ecology and Evolution, 2022, 13, 722-733.	5.2	1
7	Creating past habitat maps to quantify local extirpation of Australian threatened birds. Environmental Research Letters, 2022, 17, 024032.	5.2	8
8	Aligning ecological compensation policies with the Postâ€2020 Global Biodiversity Framework to achieve real net gain in biodiversity. Conservation Science and Practice, 2022, 4, .	2.0	8
9	From Climate Change to Pandemics: Decision Science Can Help Scientists Have Impact. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	6
10	Effectiveness of 20 years of conservation investments in protecting orangutans. Current Biology, 2022, 32, 1754-1763.e6.	3.9	16
11	Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nature Climate Change, 2022, 12, 402-407.	18.8	20
12	Spatial zoning to conserve fish species with complex life cycles in estuaries. Ocean and Coastal Management, 2022, 221, 106115.	4.4	1
13	Efficient small-scale marine reserve design requires high-resolution biodiversity and stakeholder data. Ocean and Coastal Management, 2022, 223, 106152.	4.4	2
14	Include biodiversity representation indicators in area-based conservation targets. Nature Ecology and Evolution, 2022, 6, 123-126.	7.8	29
15	The minimum land area requiring conservation attention to safeguard biodiversity. Science, 2022, 376, 1094-1101.	12.6	85
16	Communicating the true challenges of saving species: response to Wiedenfeld et al Conservation Biology, 2022, 36, .	4.7	4
17	Gender and conservation science: Men continue to outâ€publish women at the world's largest environmental conservation nonâ€profit organization. Conservation Science and Practice, 2022, 4, .	2.0	6
18	Software for prioritizing conservation actions based on probabilistic information. Conservation Biology, 2021, 35, 1299-1308.	4.7	10

#	Article	IF	CITATIONS
19	Evaluating surrogates of genetic diversity for conservation planning. Conservation Biology, 2021, 35, 634-642.	4.7	13
20	Importance of species translocations under rapid climate change. Conservation Biology, 2021, 35, 775-783.	4.7	40
21	Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries. Energy, 2021, 215, 119033.	8.8	22
22	How to choose a costâ€effective indicator to trigger conservation decisions?. Methods in Ecology and Evolution, 2021, 12, 520-529.	5.2	5
23	Understanding Traditional Chinese Medicine to strengthen conservation outcomes. People and Nature, 2021, 3, 115-128.	3.7	32
24	Misinformation, internet honey trading and beekeepers drive a plant invasion. Ecology Letters, 2021, 24, 165-169.	6.4	12
25	A threatened species index for Australian birds. Conservation Science and Practice, 2021, 3, e322.	2.0	18
26	Rhino horn use by consumers of traditional Chinese medicine in China. Conservation Science and Practice, 2021, 3, e365.	2.0	5
27	Minimizing cross-realm threats from land-use change: A national-scale conservation framework connecting land, freshwater and marine systems. Biological Conservation, 2021, 254, 108954.	4.1	18
28	Conservation planning for people and nature in a Chilean biodiversity hotspot. People and Nature, 2021, 3, 686-699.	3.7	12
29	Protecting the global ocean for biodiversity, food and climate. Nature, 2021, 592, 397-402.	27.8	359
30	A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.	7.8	61
31	Optimising monitoring for trend detection after 16 years of woodlandâ€bird surveys. Journal of Applied Ecology, 2021, 58, 1090-1100.	4.0	11
32	China's Legalization of Domestic Rhino Horn Trade: Traditional Chinese Medicine Practitioner Perspectives and the Likelihood of Prescription. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	9
33	Deforestation and bird habitat loss in Colombia. Biological Conservation, 2021, 257, 109044.	4.1	20
34	Variable effects of protected areas on longâ€term multispecies trends for Australia's imperiled birds. Conservation Science and Practice, 2021, 3, e443.	2.0	4
35	Prioritizing actions: spatial action maps for conservation. Annals of the New York Academy of Sciences, 2021, 1505, 118-141.	3.8	12
36	Southward decrease in the protection of persistent giant kelp forests in the northeast Pacific. Communications Earth & Environment, 2021, 2, .	6.8	9

#	Article	IF	Citations
37	Indicators keep progress honest: A call to track both the quantity and quality of protected areas. One Earth, 2021, 4, 901-906.	6.8	15
38	Mangrove Forest Cover and Phenology with Landsat Dense Time Series in Central Queensland, Australia. Remote Sensing, 2021, 13, 3032.	4.0	16
39	Importance of equitable cost sharing in the Convention on Biological Diversity's protected area agenda. Conservation Biology, 2021, , .	4.7	3
40	Incorporating climate velocity into the design of climateâ€smart networks of marine protected areas. Methods in Ecology and Evolution, 2021, 12, 1969-1983.	5.2	22
41	Predicted protected area downsizing impedes conservation progress across terrestrial ecoregions in the tropics and subtropics. Conservation Science and Practice, 2021, 3, e529.	2.0	4
42	A survey of traditional Chinese medicine consumers to investigate the impact of China's legalization of rhino horn trade on stigmatization and likelihood of use. Conservation Science and Practice, 2021, 3, e536.	2.0	0
43	Multi-objective zoning for aquaculture and biodiversity. Science of the Total Environment, 2021, 785, 146997.	8.0	16
44	Scheduling incremental actions to build a comprehensive national protected area network for Papua New Guinea. Conservation Science and Practice, 2021, 3, e354.	2.0	5
45	Estimating the benefit of well-managed protected areas for threatened species conservation. Oryx, 2020, 54, 276-284.	1.0	43
46	Use of surrogate species to costâ€effectively prioritize conservation actions. Conservation Biology, 2020, 34, 600-610.	4.7	42
47	The human footprint represents observable human pressures: Reply to Kennedy et al Global Change Biology, 2020, 26, 330-332.	9.5	10
48	An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Global Ecology and Conservation, 2020, 21, e00860.	2.1	81
49	Impact of 2019–2020 mega-fires on Australian fauna habitat. Nature Ecology and Evolution, 2020, 4, 1321-1326.	7.8	209
50	Eroded protections threaten U.S. forests. Science, 2020, 370, 921-922.	12.6	0
51	A methodological guide for translating study instruments in crossâ€cultural research: Adapting the †connectedness to nature†scale into Chinese. Methods in Ecology and Evolution, 2020, 11, 1379-1387.	5.2	21
52	Advancing Systematic Conservation Planning for Ecosystem Services. Trends in Ecology and Evolution, 2020, 35, 1129-1139.	8.7	46
53	Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 2020, 369, 1515-1518.	12.6	1,330
54	Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 2020, 11, 5978.	12.8	188

#	Article	IF	Citations
55	Prioritizing debt conversion opportunities for marine conservation. Conservation Biology, 2020, 34, 1065-1075.	4.7	12
56	Restoring Africa's Lions: Start With Good Counts. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
57	Identifying trade-offs between biodiversity conservation and ecosystem services delivery for land-use decisions. Scientific Reports, 2020, 10, 7971.	3.3	20
58	To Achieve Big Wins for Terrestrial Conservation, Prioritize Protection of Ecoregions Closest to Meeting Targets. One Earth, 2020, 2, 479-486.	6.8	21
59	A conservation science agenda for a changing Upper Midwest and Great Plains, <scp>United States</scp> . Conservation Science and Practice, 2020, 2, e236.	2.0	7
60	UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science, 2020, 7, .	2.5	181
61	The Extraordinary Value of Wilderness Areas in the Anthropocene. , 2020, , 158-168.		1
62	Area Requirements to Safeguard Earth's Marine Species. One Earth, 2020, 2, 188-196.	6.8	46
63	Conservation prioritization can resolve the flagship species conundrum. Nature Communications, 2020, 11, 994.	12.8	80
64	Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods in Ecology and Evolution, 2020, 11, 570-579.	5.2	69
65	Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecology Letters, 2020, 23, 674-681.	6.4	139
66	Advancing Coral Reef Governance into the Anthropocene. One Earth, 2020, 2, 64-74.	6.8	83
67	Remote Sensing of Mangroves and Estuarine Communities in Central Queensland, Australia. Remote Sensing, 2020, 12, 197.	4.0	8
68	Planning for climate change through additions to a national protected area network: implications for cost and configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190117.	4.0	48
69	Marine heat waves threaten kelp forests. Science, 2020, 367, 635-635.	12.6	52
70	Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conservation Biology, 2020, 34, 1452-1462.	4.7	40
71	Effects of amusing memes on concern for unappealing species. Conservation Biology, 2020, 34, 1200-1209.	4.7	14
72	Research Priorities for Achieving Healthy Marine Ecosystems and Human Communities in a Changing Climate. Frontiers in Marine Science, 2020, 7, .	2.5	39

#	Article	IF	CITATIONS
73	Evidence-Based Guidelines for Prioritizing Investments to Meet International Conservation Objectives. One Earth, 2020, 2, 55-63.	6.8	12
74	Freeing land from biofuel production through microalgal cultivation in the Neotropical region. Environmental Research Letters, 2020, 15, 094094.	5.2	18
75	Marine conservation: towards a multi-layered network approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190459.	4.0	8
76	Moving from biodiversity offsets to a targetâ€based approach for ecological compensation. Conservation Letters, 2020, 13, e12695.	5 . 7	51
77	Synergies between the key biodiversity area and systematic conservation planning approaches. Conservation Letters, 2019, 12, e12625.	5.7	46
78	Optimal planning to mitigate the impacts of roads on multiple species. Journal of Applied Ecology, 2019, 56, 201-213.	4.0	20
79	Emerging evidence that armed conflict and coca cultivation influence deforestation patterns. Biological Conservation, 2019, 239, 108176.	4.1	60
80	Let's Train More Theoretical Ecologists – Here Is Why. Trends in Ecology and Evolution, 2019, 34, 759-762.	8.7	12
81	Spending to save: What will it cost to halt Australia's extinction crisis?. Conservation Letters, 2019, 12, e12682.	5.7	69
82	The role of animal welfare values in the rhino horn trade debate. Conservation Science and Practice, 2019, 1, e103.	2.0	7
83	Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conservation Science and Practice, 2019, 1, e117.	2.0	53
84	Identifying technology solutions to bring conservation into the innovation era. Frontiers in Ecology and the Environment, 2019, 17, 591-598.	4.0	13
85	Aligning evidence generation and use across health, development, and environment. Current Opinion in Environmental Sustainability, 2019, 39, 81-93.	6.3	16
86	Potential for low-cost carbon dioxide removal through tropical reforestation. Nature Climate Change, 2019, 9, 463-466.	18.8	129
87	Quantifying biases in marineâ€protectedâ€area placement relative to abatable threats. Conservation Biology, 2019, 33, 1350-1359.	4.7	30
88	Strengthening China's national biodiversity strategy to attain an ecological civilization. Conservation Letters, 2019, 12, e12660.	5.7	46
89	Motivations, success, and cost of coral reef restoration. Restoration Ecology, 2019, 27, 981-991.	2.9	92
90	Weighing the benefits of expanding protected areas versus managing existing ones. Nature Sustainability, 2019, 2, 404-411.	23.7	68

#	Article	IF	Citations
91	Data gaps and opportunities for comparative and conservation biology. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9658-9664.	7.1	115
92	Insights on fostering the emergence of robust conservation actions from Zimbabwe's CAMPFIRE program. Global Ecology and Conservation, 2019, 17, e00538.	2.1	14
93	Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 2019, 107, 250-263.	16.4	167
94	Hotspots of human impact on threatened terrestrial vertebrates. PLoS Biology, 2019, 17, e3000158.	5.6	95
95	Global mapping of costâ€effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy, 2019, 11, 914-929.	5.6	33
96	Using individualâ€based movement information to identify spatial conservation priorities for mobile species. Conservation Biology, 2019, 33, 1426-1437.	4.7	22
97	Restoration priorities to achieve the global protected area target. Conservation Letters, 2019, 12, e12646.	5.7	55
98	Integrating local knowledge to prioritise invasive species management. People and Nature, 2019, 1 , 220-233.	3.7	6
99	How conservation initiatives go to scale. Nature Sustainability, 2019, 2, 935-940.	23.7	38
100	Extinction filters mediate the global effects of habitat fragmentation on animals. Science, 2019, 366, 1236-1239.	12.6	164
101	The future of resilience-based management in coral reef ecosystems. Journal of Environmental Management, 2019, 233, 291-301.	7.8	143
102	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution, 2019, 3, 62-70.	7.8	199
103	A guide to modelling priorities for managing landâ€based impacts on coastal ecosystems. Journal of Applied Ecology, 2019, 56, 1106-1116.	4.0	28
104	Metrics of progress in the understanding and management of threats to Australian birds. Conservation Biology, 2019, 33, 456-468.	4.7	31
105	Brokering Trust in Citizen Science. Society and Natural Resources, 2019, 32, 292-302.	1.9	28
106	Protect Catalonia's corals despite politics. Science, 2019, 363, 135-136.	12.6	5
107	Do Big Unstructured Biodiversity Data Mean More Knowledge?. Frontiers in Ecology and Evolution, 2019, 6, .	2.2	90
108	Larger gains from improved management over sparing–sharing for tropical forests. Nature Sustainability, 2019, 2, 53-61.	23.7	52

#	Article	IF	Citations
109	Metrics for evaluating representation target achievement in protected area networks. Diversity and Distributions, 2019, 25, 170-175.	4.1	15
110	Leopards provide public health benefits in Mumbai, India. Frontiers in Ecology and the Environment, 2018, 16, 176-182.	4.0	71
111	Using ideal distributions of the time since habitat was disturbed to build metrics for evaluating landscape condition. Ecological Applications, 2018, 28, 709-720.	3.8	3
112	Reach and messages of the world's largest ivory burn. Conservation Biology, 2018, 32, 765-773.	4.7	15
113	An Evaluation of Marine Important Bird and Biodiversity Areas in the Context of Spatial Conservation Prioritization. Conservation Letters, 2018, 11, e12399.	5.7	8
114	Response—lvory crisis. Science, 2018, 360, 277-278.	12.6	0
115	The use, and usefulness, of spatial conservation prioritizations. Conservation Letters, 2018, 11, e12459.	5.7	63
116	Bigger or better: The relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conservation Letters, 2018, 11, e12433.	5.7	35
117	The Future of Landscape Conservation. BioScience, 2018, 68, 60-63.	4.9	49
118	Ocean zoning within a sparing versus sharing framework. Theoretical Ecology, 2018, 11, 245-254.	1.0	12
119	The extent and predictability of the biodiversity–carbon correlation. Ecology Letters, 2018, 21, 365-375.	6.4	46
120	From Marxan to management: ocean zoning with stakeholders for Tun Mustapha Park in Sabah, Malaysia. Oryx, 2018, 52, 775-786.	1.0	31
121	Bias in protectedâ€area location and its effects on longâ€ŧerm aspirations of biodiversity conventions. Conservation Biology, 2018, 32, 127-134.	4.7	187
122	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	10.4	154
123	A habitatâ€based approach to predict impacts of marine protected areas on fishers. Conservation Biology, 2018, 32, 1096-1106.	4.7	14
124	Impacts of fishing, river flow and connectivity loss on the conservation of a migratory fish population. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 45-54.	2.0	14
125	Tradeâ€offs in tripleâ€bottomâ€line outcomes when recovering fisheries. Fish and Fisheries, 2018, 19, 107-116.	5.3	8
126	3D spatial conservation prioritisation: Accounting for depth in marine environments. Methods in Ecology and Evolution, 2018, 9, 773-784.	5.2	27

#	Article	IF	CITATIONS
127	A theory for ecological survey methods to map individual distributions. Theoretical Ecology, 2018, 11, 213-223.	1.0	4
128	Improving private land conservation with outcomeâ€based biodiversity payments. Journal of Applied Ecology, 2018, 55, 1476-1485.	4.0	12
129	Food, money and lobsters: Valuing ecosystem services to align environmental management with Sustainable Development Goals. Ecosystem Services, 2018, 29, 56-69.	5.4	24
130	Linear infrastructure impacts on landscape hydrology. Journal of Environmental Management, 2018, 206, 446-457.	7.8	18
131	Tax Shifting and Incentives for Biodiversity Conservation on Private Lands. Conservation Letters, 2018, 11, e12377.	5 . 7	14
132	raptr: Representative and adequate prioritization toolkit in R. Methods in Ecology and Evolution, 2018, 9, 320-330.	5.2	9
133	Medicinal Use and Legalized Trade of Rhinoceros Horn From the Perspective of Traditional Chinese Medicine Practitioners in Hong Kong. Tropical Conservation Science, 2018, 11, 194008291878742.	1.2	24
134	Vehicle tracks are predator highways in intact landscapes. Biological Conservation, 2018, 228, 281-290.	4.1	20
135	Changes in human footprint drive changes in species extinction risk. Nature Communications, 2018, 9, 4621.	12.8	173
136	A large-scale application of project prioritization to threatened species investment by a government agency. PLoS ONE, 2018, 13, e0201413.	2.5	39
137	Endangered species recovery: A resource allocation problem. Science, 2018, 362, 284-286.	12.6	78
138	Securing a Long-term Future for Coral Reefs. Trends in Ecology and Evolution, 2018, 33, 936-944.	8.7	130
139	Protect the last of the wild. Nature, 2018, 563, 27-30.	27.8	217
140	Telemetry reveals existing marine protected areas are worse than random for protecting the foraging habitat of threatened shy albatross (<i>Thalassarche cauta</i>). Diversity and Distributions, 2018, 24, 1744-1755.	4.1	12
141	Spatially explicit approach to estimation of total population abundance in field surveys. Journal of Theoretical Biology, 2018, 453, 88-95.	1.7	5
142	Addressing transboundary conservation challenges through marine spatial prioritization. Conservation Biology, 2018, 32, 1107-1117.	4.7	33
143	Efficiently enforcing artisanal fisheries to protect estuarine biodiversity. Ecological Applications, 2018, 28, 1450-1458.	3.8	5
144	Riskâ€sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 2018, 11, e12587.	5.7	151

#	Article	IF	Citations
145	Poor ecological representation by an expensive reserve system: Evaluating 35 years of marine protected area expansion. Conservation Letters, 2018, 11, e12584.	5.7	46
146	Understanding avian assemblage change within anthropogenic environments using citizen science data. Landscape and Urban Planning, 2018, 179, 81-89.	7.5	9
147	Standardized reporting of the costs of management interventions for biodiversity conservation. Conservation Biology, 2018, 32, 979-988.	4.7	74
148	The Location and Protection Status of Earth's Diminishing Marine Wilderness. Current Biology, 2018, 28, 2506-2512.e3.	3.9	192
149	Revisiting "Success―and "Failure―of Marine Protected Areas: A Conservation Scientist Perspective. Frontiers in Marine Science, 2018, 5, .	2.5	174
150	Informing network management using fuzzy cognitive maps. Biological Conservation, 2018, 224, 122-128.	4.1	29
151	Managing Natural Capital Stocks for the Provision of Ecosystem Services. Conservation Letters, 2017, 10, 211-220.	5.7	50
152	Factors influencing the use of decision support tools in the development and design of conservation policy. Environmental Science and Policy, 2017, 70, 1-8.	4.9	26
153	Spending limited resources on de-extinction could lead to net biodiversity loss. Nature Ecology and Evolution, 2017, 1, 53.	7.8	29
154	Changing trends and persisting biases in three decades of conservation science. Global Ecology and Conservation, 2017, 10, 32-42.	2.1	192
155	Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature Communications, 2017, 8, 14895.	12.8	315
156	After Chile's fires, reforest private land. Science, 2017, 356, 147-148.	12.6	18
157	On which targets should we compromise in conservation prioritization problems?. Methods in Ecology and Evolution, 2017, 8, 1858-1865.	5.2	3
158	Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nature Ecology and Evolution, 2017, 1, 151.	7.8	73
159	Costs are key when reintroducing threatened species to multiple release sites. Animal Conservation, 2017, 20, 331-340.	2.9	14
160	Response to "Rebutting the inclined analyses on the costâ€effectiveness and feasibility of coral reef restoration― Ecological Applications, 2017, 27, 1974-1980.	3.8	3
161	Climate change decouples marine and freshwater habitats of a threatened migratory fish. Diversity and Distributions, 2017, 23, 751-760.	4.1	13
162	Forecasting ecosystem responses to climate change across Africa's Albertine Rift. Biological Conservation, 2017, 209, 464-472.	4.1	31

#	Article	IF	Citations
163	Systematic Conservation Planning with Marxan. , 2017, , 211-227.		12
164	Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, 2017, 74, 1131-1146.	16.4	113
165	Incorporating larval dispersal into <scp>MPA</scp> design for both conservation and fisheries. Ecological Applications, 2017, 27, 925-941.	3.8	83
166	Trade-offs between data resolution, accuracy, and cost when choosing information to plan reserves for coral reef ecosystems. Journal of Environmental Management, 2017, 188, 108-119.	7.8	10
167	The effect of conservation spending. Nature, 2017, 551, 309-310.	27.8	8
168	Prescribed burning impacts avian diversity and disadvantages woodland-specialist birds unless long-unburnt habitat is retained. Biological Conservation, 2017, 215, 268-276.	4.1	23
169	Lines in the sand: quantifying the cumulative development footprint in the world's largest remaining temperate woodland. Landscape Ecology, 2017, 32, 1969-1986.	4.2	10
170	Waiting can be an optimal conservation strategy, even in a crisis discipline. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10497-10502.	7.1	18
171	Effect of marine reserve establishment on non-cooperative fisheries management. Ecological Modelling, 2017, 360, 336-342.	2.5	7
172	Assessing the impact of revegetation and weed control on urban sensitive bird species. Ecology and Evolution, 2017, 7, 4200-4208.	1.9	10
173	Breaking the deadlock on ivory. Science, 2017, 358, 1378-1381.	12.6	50
174	Society Is Ready for a New Kind of Science—Is Academia?. BioScience, 2017, 67, 591-592.	4.9	54
175	Prioritization of Marine Turtle Management Projects: A Protocol that Accounts for Threats to Different Life History Stages. Conservation Letters, 2017, 10, 547-554.	5.7	32
176	Operationalizing Network Theory for Ecosystem Service Assessments. Trends in Ecology and Evolution, 2017, 32, 118-130.	8.7	103
177	Limitations and tradeâ€offs in the use of species distribution maps for protected area planning. Journal of Applied Ecology, 2017, 54, 402-411.	4.0	67
178	Timing of Protection of Critical Habitat Matters. Conservation Letters, 2017, 10, 308-316.	5.7	37
179	Incorporating climate change into ecosystem service assessments and decisions: a review. Global Change Biology, 2017, 23, 28-41.	9.5	174
180	Prioritizing revived species: what are the conservation management implications of deâ€extinction?. Functional Ecology, 2017, 31, 1041-1048.	3.6	20

#	Article	IF	Citations
181	Integrating research using animalâ€borne telemetry with the needs of conservation management. Journal of Applied Ecology, 2017, 54, 423-429.	4.0	106
182	Setting conservation priorities for migratory networks under uncertainty. Conservation Biology, 2017, 31, 646-656.	4.7	55
183	Strengths and vulnerabilities of Australian networks for conservation of threatened birds. Oryx, 2017, 51, 673-683.	1.0	4
184	Maintaining experiences of nature as a city grows. Ecology and Society, 2017, 22, .	2.3	12
185	Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent. PLoS ONE, 2017, 12, e0187284.	2.5	27
186	Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries. PLoS Biology, 2017, 15, e2000537.	5.6	48
187	Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems. PLoS Biology, 2017, 15, e2001886.	5.6	27
188	Methods for calculating Protection Equality for conservation planning. PLoS ONE, 2017, 12, e0171591.	2.5	29
189	Mapping Indigenous land management for threatened species conservation: An Australian case-study. PLoS ONE, 2017, 12, e0173876.	2.5	37
190	Cost-Effective Resource Allocator: A decision support tool for threatened species management. Parks, 2017, 23, 101-113.	1.9	14
191	Commentary: Linking Movement Ecology with Wildlife Management and Conservation. Frontiers in Ecology and Evolution, 2016, 4, .	2.2	11
192	Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities. PLoS ONE, 2016, 11, e0151992.	2.5	42
193	Bolder science needed now for protected areas. Conservation Biology, 2016, 30, 243-248.	4.7	149
194	Seascape features, rather than dispersal traits, predict spatial genetic patterns in coâ€distributed reef fishes. Journal of Biogeography, 2016, 43, 256-267.	3.0	48
195	Progress in improving the protection of species and habitats in Australia. Biological Conservation, 2016, 200, 184-191.	4.1	23
196	The cost and feasibility of marine coastal restoration. Ecological Applications, 2016, 26, 1055-1074.	3.8	495
197	Prioritizing eradication actions on islands: it's not all or nothing. Journal of Applied Ecology, 2016, 53, 733-741.	4.0	33
198	Quantifying the relative irreplaceability of important bird and biodiversity areas. Conservation Biology, 2016, 30, 392-402.	4.7	24

#	Article	lF	Citations
199	Controlling range expansion in habitat networks by adaptively targeting source populations. Conservation Biology, 2016, 30, 856-866.	4.7	28
200	Incorporating dynamic distributions intoÂspatial prioritization. Diversity and Distributions, 2016, 22, 332-343.	4.1	54
201	The value of migration information for conservation prioritization of sea turtles in the Mediterranean. Global Ecology and Biogeography, 2016, 25, 540-552.	5.8	43
202	Equitable Representation of Ecoregions is Slowly Improving Despite Strategic Planning Shortfalls. Conservation Letters, 2016, 9, 422-428.	5.7	30
203	Global terrestrial Human Footprint maps for 1993 and 2009. Scientific Data, 2016, 3, 160067.	5.3	490
204	Balancing Ecosystem and Threatened Species Representation in Protected Areas and Implications for Nations Achieving Global Conservation Goals. Conservation Letters, 2016, 9, 438-445.	5.7	21
205	Taming a Wicked Problem: Resolving Controversies in Biodiversity Offsetting. BioScience, 2016, 66, 489-498.	4.9	171
206	Challenges in assessing the vulnerability of species to climate change to inform conservation actions. Biological Conservation, 2016, 199, 10-15.	4.1	50
207	Global Biodiversity Targets Require Both Sufficiency and Efficiency. Conservation Letters, 2016, 9, 395-397.	5.7	34
208	A Loss-Gain Calculator for Biodiversity Offsets and the Circumstances in Which No Net Loss Is Feasible. Conservation Letters, 2016, 9, 252-259.	5.7	53
209	Reconciling Development and Conservation under Coastal Squeeze from Rising Sea Level. Conservation Letters, 2016, 9, 361-368.	5.7	43
210	Interactions Between Biodiversity Offsets and Protected Area Commitments: Avoiding Perverse Outcomes. Conservation Letters, 2016, 9, 384-389.	5.7	28
211	Evaluating Trade-Offs between Target Persistence Levels and Numbers of Species Conserved. Conservation Letters, 2016, 9, 51-57.	5.7	16
212	Better planning outcomes requires clear consideration of costs, condition and conservation benefits, and access to the best available data: Reply to Gosper et al., 2016. Biological Conservation, 2016, 200, 242-243.	4.1	2
213	Don't let climate crush coral efforts. Nature, 2016, 536, 396-396.	27.8	6
214	Improving conservation outcomes for coral reefs affected by future oil palm development in Papua New Guinea. Biological Conservation, 2016, 203, 43-54.	4.1	33
215	A disaggregated biodiversity offset accounting model to improve estimation of ecological equivalency and no net loss. Biological Conservation, 2016, 204, 322-332.	4.1	36
216	Using food-web theory to conserve ecosystems. Nature Communications, 2016, 7, 10245.	12.8	86

#	Article	IF	Citations
217	Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 2016, 7, 12558.	12.8	1,138
218	Improving spatial prioritisation for remote marine regions: optimising biodiversity conservation and sustainable development trade-offs. Scientific Reports, 2016, 6, 32029.	3.3	23
219	Factoring attitudes towards armed conflict risk into selection of protected areas for conservation. Nature Communications, 2016, 7, 11042.	12.8	27
220	Incorporating early life stages of fishes into estuarine spatial conservation planning. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 1013-1030.	2.0	18
221	Track the impact of Kenya's ivory burn. Nature, 2016, 534, 179-179.	27.8	7
222	Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biological Conservation, 2016, 199, 157-171.	4.1	101
223	Optimizing disturbance management for wildlife protection: the enforcement allocation problem. Journal of Applied Ecology, 2016, 53, 1215-1224.	4.0	13
224	Ecosystem Management Along Ephemeral Rivers: Trading Off Socioâ€Economic Water Supply and Vegetation Conservation under Flood Regime Uncertainty. River Research and Applications, 2016, 32, 219-233.	1.7	10
225	Indigenous benefits and carbon offset schemes: An Australian case study. Environmental Science and Policy, 2016, 56, 129-134.	4.9	31
226	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	4.0	126
227	Solving conservation planning problems with integer linear programming. Ecological Modelling, 2016, 328, 14-22.	2.5	106
228	Prioritising catchment management projects to improve marine water quality. Environmental Science and Policy, 2016, 59, 35-43.	4.9	24
229	Incorporating climate change into spatial conservation prioritisation: A review. Biological Conservation, 2016, 194, 121-130.	4.1	170
230	Testing the effectiveness of surrogate species for conservation planning in the Greater Virunga Landscape, Africa. Landscape and Urban Planning, 2016, 145, 1-11.	7.5	15
231	Geographic range size and extinction risk assessment in nomadic species. Conservation Biology, 2015, 29, 865-876.	4.7	63
232	Effects of threat management interactions on conservation priorities. Conservation Biology, 2015, 29, 1626-1635.	4.7	42
233	Fisheries and biodiversity benefits of using static versus dynamic models for designing marine reserve networks. Ecosphere, 2015, 6, art182.	2.2	23
234	Incorporating habitat availability into systematic planning for restoration: a speciesâ€specific approach for Atlantic Forest mammals. Diversity and Distributions, 2015, 21, 1027-1037.	4.1	53

#	Article	IF	Citations
235	Conservation: Stop misuse of biodiversity offsets. Nature, 2015, 523, 401-403.	27.8	106
236	Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. Royal Society Open Science, 2015, 2, 150107.	2.4	22
237	Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science and Policy, 2015, 50, 114-129.	4.9	74
238	Protected areas and global conservation of migratory birds. Science, 2015, 350, 1255-1258.	12.6	253
239	Clear consideration of costs, condition and conservation benefits yields better planning outcomes. Biological Conservation, 2015, 191, 716-727.	4.1	35
240	The development of the Australian environmental offsets policy: from theory to practice. Environmental Conservation, 2015, 42, 306-314.	1.3	44
241	The emergent geography of biophysical dispersal barriers across the Indoâ€West Pacific. Diversity and Distributions, 2015, 21, 465-476.	4.1	68
242	Making decisions for managing ecosystem services. Biological Conservation, 2015, 184, 229-238.	4.1	192
243	Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Frontiers in Ecology and the Environment, 2015, 13, 91-99.	4.0	187
244	Designing environmental research for impact. Science of the Total Environment, 2015, 534, 4-13.	8.0	35
245	Operationalizing resilience for adaptive coral reef management under global environmental change. Global Change Biology, 2015, 21, 48-61.	9.5	201
246	Towards a framework for assessment and management of cumulative human impacts on marine food webs. Conservation Biology, 2015, 29, 1228-1234.	4.7	71
247	Spatial Priorities for Restoring Biodiverse Carbon Forests. BioScience, 2015, 65, 372-382.	4.9	22
248	Alternative futures for Borneo show the value of integrating economic and conservation targets across borders. Nature Communications, 2015, 6, 6819.	12.8	83
249	Using threat maps for cost-effective prioritization of actions to conserve coastal habitats. Marine Policy, 2015, 61, 95-102.	3.2	25
250	Effective conservation requires clear objectives and prioritizing actions, not places or species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4342.	7.1	62
251	Optimal Conservation Outcomes Require Both Restoration and Protection. PLoS Biology, 2015, 13, e1002052.	5.6	185
252	Opportunities and costs for preventing vertebrate extinctions. Current Biology, 2015, 25, R219-R221.	3.9	25

#	Article	IF	Citations
253	The effectiveness of marine reserve systems constructed using different surrogates of biodiversity. Conservation Biology, 2015, 29, 657-667.	4.7	42
254	Biodiversity gains from efficient use of private sponsorship for flagship species conservation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142693.	2.6	41
255	Geographic bias in citation rates of conservation research. Conservation Biology, 2015, 29, 920-925.	4.7	35
256	Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 2015, 6, 8208.	12.8	113
257	Priority threat management of invasive animals to protect biodiversity under climate change. Global Change Biology, 2015, 21, 3917-3930.	9.5	42
258	Polar lessons learned: longâ€ŧerm management based on shared threats in Arctic and Antarctic environments. Frontiers in Ecology and the Environment, 2015, 13, 316-324.	4.0	59
259	Social equity and the probability of success of biodiversity conservation. Global Environmental Change, 2015, 35, 299-306.	7.8	69
260	Two additional principles for determining which species to monitor. Ecology, 2015, 96, 3016-3022.	3.2	12
261	The role of scale in designing protected area systems to conserve poorly known species. Ecosphere, 2015, 6, 1-17.	2.2	3
262	Improving policy efficiency and effectiveness to save more species: A case study of the megadiverse country Australia. Biological Conservation, 2015, 182, 102-108.	4.1	47
263	Current practices in the identification of critical habitat for threatened species. Conservation Biology, 2015, 29, 482-492.	4.7	68
264	How much is new information worth? Evaluating the financial benefit of resolving management uncertainty. Journal of Applied Ecology, 2015, 52, 12-20.	4.0	73
265	A multidisciplinary approach in the design of marine protected areas: Integration of science and stakeholder based methods. Ocean and Coastal Management, 2015, 103, 86-93.	4.4	43
266	Effect of risk aversion on prioritizing conservation projects. Conservation Biology, 2015, 29, 513-524.	4.7	59
267	Integrating life history traits and forest structure to evaluate the vulnerability of rainforest birds along gradients of deforestation and fragmentation in eastern Australia. Biological Conservation, 2015, 188, 89-99.	4.1	30
268	Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 225-234.	1.4	49
269	Balancing extractive and non-extractive uses in marine conservation plans. Marine Policy, 2015, 52, 11-18.	3.2	21
270	Evaluating protected area effectiveness using bird lists in the Australian Wet Tropics. Diversity and Distributions, 2015, 21, 368-378.	4.1	25

#	Article	IF	Citations
271	The Effect of Applying Alternate IPCC Climate Scenarios to Marine Reserve Design for Range Changing Species. Conservation Letters, 2015, 8, 320-328.	5.7	21
272	Biodiverse Planting for Carbon and Biodiversity on Indigenous Land. PLoS ONE, 2014, 9, e91281.	2.5	20
273	Cost-efficient fenced reserves for conservation: single large or two small?. , 2014, 24, 1780-1792.		20
274	Informed actions: where to cost effectively manage multiple threats to species to maximize return on investment. Ecological Applications, 2014, 24, 1357-1373.	3.8	67
275	Antarctica's Protected Areas Are Inadequate, Unrepresentative, and at Risk. PLoS Biology, 2014, 12, e1001888.	5.6	88
276	Targeting Global Protected Area Expansion for Imperiled Biodiversity. PLoS Biology, 2014, 12, e1001891.	5.6	430
277	Efficiently targeting resources to deter illegal activities in protected areas. Journal of Applied Ecology, 2014, 51, 714-725.	4.0	73
278	Under the radar: mitigating enigmatic ecological impacts. Trends in Ecology and Evolution, 2014, 29, 635-644.	8.7	61
279	The control of rank-abundance distributions by a competitive despotic species. Oecologia, 2014, 176, 849-857.	2.0	9
280	Advanced Driver Assistance Systems and Animals. KI - Kunstliche Intelligenz, 2014, 28, 263-269.	3.2	13
281	Biodiversity priority areas and religions—a global analysis of spatial overlap. Oryx, 2014, 48, 17-22.	1.0	24
282	A decision framework for management of conflicting production and biodiversity goals for a commercially valuable invasive species. Agricultural Systems, 2014, 125, 1-11.	6.1	26
283	Cost-effective river rehabilitation planning: Optimizing forÂmorphological benefits at large spatial scales. Journal of Environmental Management, 2014, 132, 296-303.	7.8	19
284	Regionalâ€scale patterns and predictors of species richness and abundance across twelve major tropical interâ€reef taxa. Ecography, 2014, 37, 162-171.	4.5	14
285	Decision science for effective management of populations subject to stochasticity and imperfect knowledge. Population Ecology, 2014, 56, 41-53.	1.2	19
286	Water Planning and Hydro-Climatic Change in the Murray-Darling Basin, Australia. Ambio, 2014, 43, 1082-1092.	5.5	51
287	Optimal planning for mitigating the impacts of roads on wildlife. Journal of Applied Ecology, 2014, 51, 726-734.	4.0	55
288	<scp>BIOFRAG</scp> â€" a new database for analyzing <scp>BIO</scp> diversity responses to forest <scp>FRAG</scp> mentation. Ecology and Evolution, 2014, 4, 1524-1537.	1.9	29

#	Article	IF	Citations
289	Geographical surrogates of genetic variation for selecting island populations for conservation. Diversity and Distributions, 2014, 20, 640-651.	4.1	16
290	Minimizing the Cost of Keeping Options Open for Conservation in a Changing Climate. Conservation Biology, 2014, 28, 646-653.	4.7	16
291	Conserving mobile species. Frontiers in Ecology and the Environment, 2014, 12, 395-402.	4.0	371
292	Determining When to Change Course in Management Actions. Conservation Biology, 2014, 28, 1617-1625.	4.7	8
293	Optimal Management of a Multispecies Shorebird Flyway under Sea‣evel Rise. Conservation Biology, 2014, 28, 1710-1720.	4.7	45
294	Spatioâ€temporal marine conservation planning to support highâ€latitude coral range expansion under climate change. Diversity and Distributions, 2014, 20, 859-871.	4.1	57
295	Using multivariate statistics to explore tradeâ€offs among spatial planning scenarios. Journal of Applied Ecology, 2014, 51, 1504-1514.	4.0	30
296	Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Diversity and Distributions, 2014, 20, 538-546.	4.1	111
297	Optimizing taxonomic resolution and sampling effort to design costâ€effective ecological models for environmental assessment. Journal of Applied Ecology, 2014, 51, 1722-1732.	4.0	34
298	Tracking the rapid loss of tidal wetlands in the Yellow Sea. Frontiers in Ecology and the Environment, 2014, 12, 267-272.	4.0	366
299	Largeâ€scale conservation planning in a multinational marine environment: cost matters. Ecological Applications, 2014, 24, 1115-1130.	3.8	55
300	Cost-effective biodiversity restoration with uncertain growth in forest habitat quality. Journal of Forest Economics, 2014, 20, 77-92.	0.2	13
301	Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biological Conservation, 2014, 174, 47-54.	4.1	46
302	Evaluating the influence of candidate terrestrial protected areas on coral reef condition in Fiji. Marine Policy, 2014, 44, 360-365.	3.2	32
303	Setting conservation priorities in Fiji: Decision science versus additive scoring systems. Marine Policy, 2014, 48, 204-205.	3.2	5
304	The Crowded Sea: Incorporating Multiple Marine Activities in Conservation Plans Can Significantly Alter Spatial Priorities. PLoS ONE, 2014, 9, e104489.	2.5	59
305	Conservation: A to-do list for the world's parks. Nature, 2014, 515, 28-31.	27.8	15
306	Impediments to the Success of Management Actions for Species Recovery. PLoS ONE, 2014, 9, e92430.	2.5	15

#	Article	IF	CITATIONS
307	Conservation Strategies for Orangutans: Reintroduction versus Habitat Preservation and the Benefits of Sustainably Logged Forest. PLoS ONE, 2014, 9, e102174.	2.5	28
308	A framework for systematic conservation planning and management of Mediterranean landscapes. Biological Conservation, 2013, 158, 371-383.	4.1	53
309	Realising the full potential of citizen science monitoring programs. Biological Conservation, 2013, 165, 128-138.	4.1	441
310	Integrated planning for land–sea ecosystem connectivity to protect coral reefs. Biological Conservation, 2013, 165, 35-42.	4.1	34
311	Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130325.	2.6	173
312	Collaboration among countries in marine conservation can achieve substantial efficiencies. Diversity and Distributions, 2013, 19, 1380-1393.	4.1	58
313	Accounting for Complementarity to Maximize Monitoring Power for Species Management. Conservation Biology, 2013, 27, 988-999.	4.7	34
314	Contribution of Systematic Reviews to Management Decisions. Conservation Biology, 2013, 27, 902-915.	4.7	78
315	How robust are global conservation priorities to climate change?. Global Environmental Change, 2013, 23, 1277-1284.	7.8	30
316	Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6229-6234.	7.1	231
317	How should we grow cities to minimize their biodiversity impacts?. Global Change Biology, 2013, 19, 401-410.	9.5	167
318	To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Diversity and Distributions, 2013, 19, 465-480.	4.1	80
319	Continentalâ€Scale Governance and the Hastening of Loss of Australia's Biodiversity. Conservation Biology, 2013, 27, 1133-1135.	4.7	39
320	Protecting islands from pest invasion: Response to Greenslade et al Biological Conservation, 2013, 157, 435-436.	4.1	2
321	Legal Trade of Africa's Rhino Horns. Science, 2013, 339, 1038-1039.	12.6	176
322	Global insights into water resources, climate change and governance. Nature Climate Change, 2013, 3, 315-321.	18.8	285
323	Achieving Conservation Science that Bridges the Knowledge–Action Boundary. Conservation Biology, 2013, 27, 669-678.	4.7	395
324	He who hesitates is lost: Why conservation in the Mediterranean Sea is necessary and possible now. Marine Policy, 2013, 42, 270-279.	3.2	44

#	Article	IF	Citations
325	Six Common Mistakes in Conservation Priority Setting. Conservation Biology, 2013, 27, 480-485.	4.7	251
326	Using systematic conservation planning to minimize REDD+ conflict with agriculture and logging in the tropics. Conservation Letters, 2013 , 6 , 116 - 124 .	5.7	32
327	Extinction risk in cloud forest fragments under climate change and habitat loss. Diversity and Distributions, 2013, 19, 518-529.	4.1	59
328	Testing the focal species approach to making conservation decisions for species persistence. Diversity and Distributions, 2013, 19, 530-540.	4.1	43
329	Are outcomes matching policy commitments in Australian marine conservation planning?. Marine Policy, 2013, 42, 39-48.	3.2	52
330	Conservation planning in a fire-prone Mediterranean region: threats and opportunities for bird species. Landscape Ecology, 2013, 28, 1517-1528.	4.2	8
331	Acting Optimally for Biodiversity in a World Obsessed with REDD+. Conservation Letters, 2013, 6, 410-417.	5.7	20
332	Incorporating uncertainty associated with habitat data in marine reserve design. Biological Conservation, 2013, 162, 41-51.	4.1	49
333	Population Viability Analysis. , 2013, , 210-219.		8
334	Can satellite-based night lights be used for conservation? The case of nesting sea turtles in the Mediterranean. Biological Conservation, 2013, 159, 63-72.	4.1	86
335	A comparison of zoning analyses to inform the planning of a marine protected area network in Raja Ampat, Indonesia. Marine Policy, 2013, 38, 184-194.	3.2	65
336	Critical research needs for managing coral reef marine protected areas: Perspectives of academics and managers. Journal of Environmental Management, 2013, 114, 84-91.	7.8	49
337	No Excuse for Habitat Destruction. Science, 2013, 340, 680-680.	12.6	16
338	Rhino Poaching: Supply and Demand Uncertainâ€"Response. Science, 2013, 340, 1168-1169.	12.6	2
339	Biodiversity Risks from Fossil Fuel Extraction. Science, 2013, 342, 425-426.	12.6	110
340	Trends and biases in the listing and recovery planning for threatened species: an Australian case study. Oryx, 2013, 47, 134-143.	1.0	79
341	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
342	Tradeoffs in marine reserve design: habitat condition, representation, and socioeconomic costs. Conservation Letters, 2013, 6, 324-332.	5.7	42

#	Article	IF	CITATIONS
343	Setting Priorities for Regional Conservation Planning in the Mediterranean Sea. PLoS ONE, 2013, 8, e59038.	2.5	120
344	How to Decide Whether to Move Species Threatened by Climate Change. PLoS ONE, 2013, 8, e75814.	2.5	40
345	Managing for Interactions between Local and Global Stressors of Ecosystems. PLoS ONE, 2013, 8, e65765.	2.5	217
346	Ecoregion-Based Conservation Planning in the Mediterranean: Dealing with Large-Scale Heterogeneity. PLoS ONE, 2013, 8, e76449.	2.5	144
347	Incorporating Conservation Zone Effectiveness for Protecting Biodiversity in Marine Planning. PLoS ONE, 2013, 8, e78986.	2.5	20
348	Avoiding bioâ€perversity from carbon sequestration solutions. Conservation Letters, 2012, 5, 28-36.	5.7	101
349	Prioritizing threat management for biodiversity conservation. Conservation Letters, 2012, 5, 196-204.	5 . 7	156
350	Acting fast helps avoid extinction. Conservation Letters, 2012, 5, 274-280.	5.7	279
351	Managing moose harvests by the seat of your pants. Theoretical Population Biology, 2012, 82, 340-347.	1.1	35
352	Advancing marine conservation planning in the Mediterranean Sea. Reviews in Fish Biology and Fisheries, 2012, 22, 943-949.	4.9	19
353	Challenges to the Future Conservation of the Antarctic. Science, 2012, 337, 158-159.	12.6	146
354	Biological surrogacy in tropical seabed assemblages fails. , 2012, 22, 1762-1771.		21
355	Unexpected outcomes of invasive predator control: the importance of evaluating conservation management actions. Animal Conservation, 2012, 15, 319-328.	2.9	79
356	How can we sell evaluating, analyzing and synthesizing to young scientists?. Animal Conservation, 2012, 15, 229-230.	2.9	8
357	Integrating research, monitoring and management into an adaptive management framework to achieve effective conservation outcomes. Animal Conservation, 2012, 15, 334-336.	2.9	14
358	A comparison of estimates of relative abundance from a weakly structured massâ€participation bird atlas survey and a robustly designed monitoring scheme. Ibis, 2012, 154, 468-479.	1.9	30
359	Adapting global biodiversity indicators to the national scale: A Red List Index for Australian birds. Biological Conservation, 2012, 148, 61-68.	4.1	61
360	Changes in seed dispersal processes and the potential for betweenâ€patch connectivity for an arid land daisy. Ecology, 2012, 93, 544-553.	3.2	11

#	Article	IF	Citations
361	How long can fisheries management delay action in response to ecosystem and climate change?. Ecological Applications, 2012, 22, 298-310.	3.8	46
362	Vulnerability of cloud forest reserves in Mexico to climate change. Nature Climate Change, 2012, 2, 448-452.	18.8	161
363	Forest conservation delivers highly variable coral reef conservation outcomes. Ecological Applications, 2012, 22, 1246-1256.	3.8	64
364	A novel approach for global mammal extinction risk reduction. Conservation Letters, 2012, 5, 134-141.	5.7	37
365	Reproductive Output and Duration of the Pelagic Larval Stage Determine Seascape-Wide Connectivity of Marine Populations. Integrative and Comparative Biology, 2012, 52, 525-537.	2.0	211
366	Cost-benefit analysis for intentional plant introductions under uncertainty. Biological Invasions, 2012, 14, 839-849.	2.4	24
367	Improving biodiversity monitoring. Austral Ecology, 2012, 37, 285-294.	1.5	130
368	Interacting populations in heterogeneous environments. Ecological Modelling, 2012, 228, 96-105.	2.5	1
369	Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population. Journal of Animal Ecology, 2012, 81, 940-952.	2.8	44
370	Exotic species richness and native species endemism increase the impact of exotic species on islands. Global Ecology and Biogeography, 2012, 21, 841-850.	5.8	37
371	Making Robust Policy Decisions Using Global Biodiversity Indicators. PLoS ONE, 2012, 7, e41128.	2.5	75
372	Survey method choice for wildlife management: the case of moose Alces alces in Sweden. Wildlife Biology, 2011, 17, 176-190.	1.4	19
373	Ecological–economic optimization of biodiversity conservation under climate change. Nature Climate Change, 2011, 1, 355-359.	18.8	85
374	Informed opportunism for conservation planning in the Solomon Islands. Conservation Letters, 2011, 4, 38-46.	5.7	81
375	General rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8323-8328.	7.1	177
376	Paying the extinction debt: woodland birds in the Mount Lofty Ranges, South Australia. Emu, 2011, 111, 59-70.	0.6	66
377	Managing and learning with multiple models: Objectives and optimization algorithms. Biological Conservation, 2011, 144, 1237-1245.	4.1	33
378	Wise selection of an indicator for monitoring the success of management actions. Biological Conservation, 2011, 144, 141-154.	4.1	50

#	Article	IF	CITATIONS
379	The influence of patch area and connectivity on avian communities in urban revegetation. Biological Conservation, 2011, 144, 722-729.	4.1	99
380	Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biological Conservation, 2011, 144, 753-763.	4.1	51
381	Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biological Conservation, 2011, 144, 1081-1088.	4.1	130
382	Does recovery planning improve the status of threatened species?. Biological Conservation, 2011, 144, 1595-1601.	4.1	77
383	Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biological Conservation, 2011, 144, 2020-2030.	4.1	167
384	Land managers' willingness-to-sell defines conservation opportunity for protected area expansion. Biological Conservation, 2011, 144, 2623-2630.	4.1	72
385	Should we implement monitoring or research for conservation?. Trends in Ecology and Evolution, 2011, 26, 108-109.	8.7	14
386	In Pursuit of Knowledge: Addressing Barriers to Effective Conservation Evaluation. Ecology and Society, 2011, 16 , .	2.3	59
387	Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning. PLoS ONE, 2011, 6, e16552.	2.5	61
388	A New Way to Measure the World's Protected Area Coverage. PLoS ONE, 2011, 6, e24707.	2.5	74
389	Allocating conservation resources between areas where persistence of a species is uncertain., 2011, 21, 844-858.		42
390	Robust Conservation Decision-Making. , 2011, , .		0
391	Designing nature reserves in the face of uncertainty. Ecology Letters, 2011, 14, 470-475.	6.4	41
392	When should we save the most endangered species?. Ecology Letters, 2011, 14, 886-890.	6.4	60
393	Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 2011, 20, 789-802.	5.8	355
394	Mammal responses to matrix development intensity. Austral Ecology, 2011, 36, 35-45.	1.5	30
395	Foraging height and landscape context predict the relative abundance of bird species in urban vegetation patches. Austral Ecology, 2011, 36, 944-953.	1.5	11
396	Optimizing search strategies for invasive pests: learn before you leap. Journal of Applied Ecology, 2011, 48, 86-95.	4.0	68

#	Article	IF	CITATIONS
397	Optimally managing under imperfect detection: a method for plant invasions. Journal of Applied Ecology, 2011, 48, 76-85.	4.0	63
398	Basic ecological theory can inform habitat restoration for woodland birds. Journal of Applied Ecology, 2011, 48, 293-300.	4.0	27
399	Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology, 2011, 56, 57-70.	2.4	146
400	Planning for reserve adequacy in dynamic landscapes; maximizing future representation of vegetation communities under flood disturbance in the Pantanal wetland. Diversity and Distributions, 2011, 17, 297-310.	4.1	39
401	What to do in the face of multiple threats? Incorporating dependencies within a return on investment framework for conservation. Diversity and Distributions, 2011, 17, 437-450.	4.1	45
402	Incorporating evolutionary processes into conservation planning using species distribution data: a case study with the western Mediterranean herpetofauna. Diversity and Distributions, 2011, 17, 408-421.	4.1	47
403	Using Conservation Evidence to Guide Management. Conservation Biology, 2011, 25, 200-202.	4.7	69
404	The Why, What, and How of Global Biodiversity Indicators Beyond the 2010 Target. Conservation Biology, 2011, 25, 450-457.	4.7	109
405	Analyzing Variability and the Rate of Decline of Migratory Shorebirds in Moreton Bay, Australia. Conservation Biology, 2011, 25, 758-766.	4.7	66
406	Variability in Population Abundance and the Classification of Extinction Risk. Conservation Biology, 2011, 25, 747-757.	4.7	49
407	Using multivariate analysis to deliver conservation planning products that align with practitioner needs. Ecography, 2011, 34, 203-207.	4.5	21
408	Evaluating model transferability for a threatened species to adjacent areas: Implications for rockâ€wallaby conservation. Austral Ecology, 2011, 36, 76-89.	1.5	21
409	Allocating biosecurity resources between preventing, detecting, and eradicating island invasions. Ecological Economics, 2011, 71, 54-62.	5.7	51
410	Dispersal connectivity and reserve selection for marine conservation. Ecological Modelling, 2011, 222, 1272-1282.	2.5	79
411	Resource allocation in two species systems: Is it worth acknowledging species interactions?. Ecological Modelling, 2011, 222, 1781-1789.	2.5	2
412	An interoperable decision support tool for conservation planning. Environmental Modelling and Software, 2011, 26, 1434-1441.	4.5	41
413	What works for threatened species recovery? An empirical evaluation for Australia. Biodiversity and Conservation, 2011, 20, 767-777.	2.6	51
414	Models based on individual level movement predict spatial patterns of genetic relatedness for two Australian forest birds. Landscape Ecology, 2011, 26, 137-148.	4.2	23

#	Article	IF	CITATIONS
415	Matrix is important for mammals in landscapes with small amounts of native forest habitat. Landscape Ecology, 2011, 26, 617-628.	4.2	75
416	Reference vs. present-day condition: early planning decisions influence the achievement of conservation objectives. Aquatic Conservation: Marine and Freshwater Ecosystems, 2011, 21, 500-509.	2.0	26
417	Extinctions: conserve not collate. Nature, 2011, 474, 284-284.	27.8	8
418	Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2670-2680.	4.0	54
419	Securing nonflagship species from extinction. Conservation Letters, 2011, 4, 324-325.	5.7	16
420	Optimal timing for managed relocation of species faced with climate change. Nature Climate Change, 2011, 1, 261-265.	18.8	125
421	The Spatial Distribution of Threats to Species in Australia. BioScience, 2011, 61, 281-289.	4.9	89
422	The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation. PLoS ONE, 2011, 6, e23843.	2.5	33
423	Catastrophic Floods May Pave the Way for Increased Genetic Diversity in Endemic Artesian Spring Snail Populations. PLoS ONE, 2011, 6, e28645.	2.5	18
424	What is Missing in Biosphere Reserves Accountability?. Natureza A Conservacao, 2011, 9, 160-178.	2.5	8
425	Has the term "conservation biology―had its day?. Frontiers in Ecology and the Environment, 2010, 8, 121-121.	4.0	2
426	Graph theoretic topology of the Great but small Barrier Reef world. Theoretical Ecology, 2010, 3, 75-88.	1.0	48
427	Multi-scaled habitat considerations for conserving urban biodiversity: native reptiles and small mammals in Brisbane, Australia. Landscape Ecology, 2010, 25, 1013-1028.	4.2	82
428	Conservation decision-making in large state spaces. Ecological Modelling, 2010, 221, 2531-2536.	2.5	13
429	Mathematical problem definition for ecological restoration planning. Ecological Modelling, 2010, 221, 2243-2250.	2.5	42
430	Determining the community structure of the coral Seriatopora hystrix from hydrodynamic and genetic networks. Ecological Modelling, 2010, 221, 2870-2880.	2.5	32
431	Optimal restoration of altered habitats. Environmental Modelling and Software, 2010, 25, 737-746.	4.5	14
432	Influence of a Threatenedâ€Species Focus on Conservation Planning. Conservation Biology, 2010, 24, 441-449.	4.7	32

#	Article	IF	Citations
433	Avoiding Unintended Outcomes from REDD. Conservation Biology, 2010, 24, 5-6.	4.7	11
434	Safeguarding Biodiversity and Ecosystem Services in the Little Karoo, South Africa. Conservation Biology, 2010, 24, 1021-1030.	4.7	66
435	Conservation Planning when Costs Are Uncertain. Conservation Biology, 2010, 24, 1529-1537.	4.7	61
436	The Capacity of Australia's Protected-Area System to Represent Threatened Species. Conservation Biology, 2010, 25, no-no.	4.7	69
437	Effects of climateâ€driven primary production change on marine food webs: implications for fisheries and conservation. Global Change Biology, 2010, 16, 1194-1212.	9.5	181
438	From climate change predictions to actions – conserving vulnerable animal groups in hotspots at a regional scale. Global Change Biology, 2010, 16, 3257-3270.	9.5	119
439	Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology, 2010, 98, 87-95.	4.0	77
440	Replacing underperforming protected areas achieves better conservation outcomes. Nature, 2010, 466, 365-367.	27.8	188
441	Resource allocation for efficient environmental management. Ecology Letters, 2010, 13, 1280-1289.	6.4	55
442	Secondary seed dispersal of <i>Erodiophyllum elderi</i> , a patchily distributed shortâ€lived perennial in the arid lands of Australia. Austral Ecology, 2010, 35, 906-918.	1.5	15
443	A Climatic Stability Approach to Prioritizing Global Conservation Investments. PLoS ONE, 2010, 5, e15103.	2.5	52
444	Resolving conflicts in fire management using decision theory: assetâ€protection versus biodiversity conservation. Conservation Letters, 2010, 3, 215-223.	5.7	72
445	The biodiversity bank cannot be a lending bank. Conservation Letters, 2010, 3, 151-158.	5.7	128
446	Optimal allocation of conservation effort among subpopulations of a threatened species: How important is patch quality?., 2010, 20, 789-797.		19
447	Planning for Biodiversity in Future Climatesâ€"Response. Science, 2010, 327, 1453-1453.	12.6	2
448	Barometer of Life: More Action, Not More Data. Science, 2010, 329, 141-141.	12.6	21
449	Active adaptive conservation of threatened species in the face of uncertainty. Ecological Applications, 2010, 20, 1476-1489.	3.8	85
450	Regional avian species declines estimated from volunteerâ€collected longâ€term data using List Length Analysis. Ecological Applications, 2010, 20, 2157-2169.	3.8	105

#	Article	IF	Citations
451	Spatial variability in ecosystem services: simple rules for predatorâ€mediated pest suppression. Ecological Applications, 2010, 20, 2322-2333.	3.8	59
452	Simulating the effects of using different types of species distribution data in reserve selection. Biological Conservation, 2010, 143, 426-438.	4.1	59
453	Effective conservation planning requires learning and adaptation. Frontiers in Ecology and the Environment, 2010, 8, 431-437.	4.0	97
454	Conserving biodiversity in production landscapes. Ecological Applications, 2010, 20, 1721-1732.	3.8	109
455	Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biological Conservation, 2010, 143, 565-575.	4.1	220
456	Protecting islands from pest invasion: optimal allocation of biosecurity resources between quarantine and surveillance. Biological Conservation, 2010, 143, 1068-1078.	4.1	59
457	An approach for ensuring minimum protected area size in systematic conservation planning. Biological Conservation, 2010, 143, 2525-2531.	4.1	44
458	Pelagic MPAs: The devil you know. Trends in Ecology and Evolution, 2010, 25, 63-64.	8.7	20
459	Monitoring does not always count. Trends in Ecology and Evolution, 2010, 25, 547-550.	8.7	220
460	Spatial marine zoning for fisheries and conservation. Frontiers in Ecology and the Environment, 2010, 8, 349-353.	4.0	133
461	Incorporating asymmetric connectivity into spatial decision making for conservation. Conservation Letters, 2010, 3, 359-368.	5 . 7	119
462	Should metapopulation restoration strategies increase patch area or number of patches?. Ecological Applications, 2010, 20, 566-581.	3.8	31
463	Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs. PLoS ONE, 2010, 5, e12431.	2.5	78
464	Metapopulation mean life time within complex networks. Marine Ecology - Progress Series, 2010, 417, 139-149.	1.9	30
465	Philosophical Issues in Ecology: Recent Trends and Future Directions. Ecology and Society, 2009, 14, .	2.3	28
466	Designing nature reserves in the face of uncertainty. Nature Precedings, 2009, , .	0.1	0
467	"True" Conservation Progress. Science, 2009, 323, 43-44.	12.6	34
468	Carbon payments as a safeguard for threatened tropical mammals. Conservation Letters, 2009, 2, 123-129.	5.7	141

#	Article	IF	Citations
469	Optimal adaptive management for the translocation of a threatened species. , 2009, 19, 515-526.		94
470	Between-country collaboration and consideration of costs increase conservation planning efficiency in the Mediterranean Basin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15368-15373.	7.1	169
471	Modeling abundance using <i>N</i> >êmixture models: the importance of considering ecological mechanisms. Ecological Applications, 2009, 19, 631-642.	3.8	136
472	Conservation planning for successional landscapes. Ecological Modelling, 2009, 220, 438-450.	2.5	27
473	Habitat attributes of landscape mosaics along a gradient of matrix development intensity: matrix management matters. Landscape Ecology, 2009, 24, 879-891.	4.2	36
474	Diversity in Current Ecological Thinking: Implications for Environmental Management. Environmental Management, 2009, 43, 17-27.	2.7	74
475	How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brushâ€tailed rockâ€wallabies ⟨i⟩Petrogale penicillata⟨i⟩. Journal of Applied Ecology, 2009, 46, 842-851.	4.0	128
476	Predicting avian patch occupancy in a fragmented landscape: do we know more than we think?. Journal of Applied Ecology, 2009, 46, 1026-1035.	4.0	19
477	Changing perspectives on the biogeography of the tropical South Pacific: influences of dispersal, vicariance and extinction. Journal of Biogeography, 2009, 36, 1035-1054.	3.0	91
478	The New South Wales Priorities Action Statement and opportunities for maximizing return on investment for conservation. Ecological Management and Restoration, 2009, 10, S143.	1.5	7
479	Delaying conservation actions for improved knowledge: how long should we wait?. Ecology Letters, 2009, 12, 293-301.	6.4	157
480	Dynamic marine protected areas can improve the resilience of coral reef systems. Ecology Letters, 2009, 12, 1336-1346.	6.4	69
481	Setting Conservation Priorities. Annals of the New York Academy of Sciences, 2009, 1162, 237-264.	3.8	206
482	Optimal Allocation of Resources among Threatened Species: a Project Prioritization Protocol. Conservation Biology, 2009, 23, 328-338.	4.7	464
483	One Hundred Questions of Importance to the Conservation of Global Biological Diversity. Conservation Biology, 2009, 23, 557-567.	4.7	468
484	Major Conservation Policy Issues for Biodiversity in Oceania. Conservation Biology, 2009, 23, 834-840.	4.7	160
485	Wilderness and future conservation priorities in Australia. Diversity and Distributions, 2009, 15, 1028-1036.	4.1	66
486	Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environmental Modelling and Software, 2009, 24, 1513-1521.	4.5	436

#	Article	IF	CITATIONS
487	Harnessing Carbon Payments to Protect Biodiversity. Science, 2009, 326, 1368-1368.	12.6	190
488	A systematic evaluation of the conservation plans for the pantanal wetland in Brazil. Wetlands, 2009, 29, 1189-1201.	1.5	26
489	Hitting the target and missing the point: targetâ€based conservation planning in context. Conservation Letters, 2009, 2, 4-11.	5.7	155
490	Cost-efficient conservation for the white-banded tanager (Neothraupis fasciata) in the Cerrado, central Brazil. Biological Conservation, 2009, 142, 563-574.	4.1	30
491	Spatial conservation prioritization inclusive of wilderness quality: A case study of Australia's biodiversity. Biological Conservation, 2009, 142, 1282-1290.	4.1	51
492	Finite conservation funds mean triage is unavoidable. Trends in Ecology and Evolution, 2009, 24, 183-184.	8.7	86
493	Pelagic protected areas: the missing dimension in ocean conservation. Trends in Ecology and Evolution, 2009, 24, 360-369.	8.7	357
494	Managing the impact of invasive species: the value of knowing the density–impact curve. Ecological Applications, 2009, 19, 376-386.	3.8	172
495	Incorporating ecological and evolutionary processes into continentalâ€scale conservation planning. Ecological Applications, 2009, 19, 206-217.	3.8	187
496	Application of Population Viability Analysis to Landscape Conservation Planning., 2009,, 33-49.		7
497	The feasibility of applying a cost-effective approach for assigning priorities for threatened species recovery with a case study from New South Wales, Australia. Pacific Conservation Biology, 2009, 15, 238.	1.0	5
498	A checklist for ecological management of landscapes for conservation. Ecology Letters, 2008, 11, 78-91.	6.4	518
499	Experimental or precautionary? Adaptive management over a range of time horizons. Journal of Applied Ecology, 2008, 45, 72-81.	4.0	51
500	Optimal Dynamic Allocation of Conservation Funding Among Priority Regions. Bulletin of Mathematical Biology, 2008, 70, 2039-2054.	1.9	18
501	Costâ€Effective Suppression and Eradication of Invasive Predators. Conservation Biology, 2008, 22, 89-98.	4.7	65
502	Subpopulation Triage: How to Allocate Conservation Effort among Populations. Conservation Biology, 2008, 22, 656-665.	4.7	43
503	Should We Protect the Strong or the Weak? Risk, Resilience, and the Selection of Marine Protected Areas. Conservation Biology, 2008, 22, 1619-1629.	4.7	116
504	Some practical suggestions for improving engagement between researchers and policyâ€makers in natural resource management. Ecological Management and Restoration, 2008, 9, 182-186.	1.5	134

#	Article	IF	Citations
505	The need for speed: informed land acquisitions for conservation in a dynamic property market. Ecology Letters, 2008, 11, 1169-1177.	6.4	71
506	The influence of multiple dispersal mechanisms and landscape structure on population clustering and connectivity in fragmented artesian spring snail populations. Molecular Ecology, 2008, 17, 3733-3751.	3.9	58
507	Regional variation in habitat–occupancy thresholds: a warning for conservation planning. Journal of Applied Ecology, 2008, 45, 549-557.	4.0	93
508	Can multiscale models of species' distribution be generalized from region to region? A case study of the koala. Journal of Applied Ecology, 2008, 45, 558-567.	4.0	109
509	Managing beyond the invader: manipulating disturbance of natives simplifies control efforts. Journal of Applied Ecology, 2008, 45, 1143-1151.	4.0	27
510	Optimal management of a goose flyway: migrant management at minimum cost. Journal of Applied Ecology, 2008, 45, 1446-1452.	4.0	43
511	Making robust decisions for conservation with restricted money and knowledge. Journal of Applied Ecology, 2008, 45, 1630-1638.	4.0	81
512	Using complex network metrics to predict the persistence of metapopulations with asymmetric connectivity patterns. Ecological Modelling, 2008, 214, 201-209.	2.5	59
513	Linking landscape ecology to planning for koala conservation. Australian Planner, 2008, 45, 24-25.	1.1	1
514	Is conservation triage just smart decision making?. Trends in Ecology and Evolution, 2008, 23, 649-654.	8.7	501
515	The importance of ecological scale for wildlife conservation in naturally fragmented environments: A case study of the brush-tailed rock-wallaby (Petrogale penicillata). Biological Conservation, 2008, 141, 7-22.	4.1	41
516	Grid-based monitoring methods for detecting population declines: Sensitivity to spatial scale and consequences of scale correction. Biological Conservation, 2008, 141, 1868-1875.	4.1	19
517	The protection of wildlife from mortality: Hypothesis and results for risk assessment. Environment International, 2008, 34, 727-736.	10.0	10
518	Historical Patterns and Drivers of Landscape Change in Colombia Since 1500: A Regionalized Spatial Approach. Annals of the American Association of Geographers, 2008, 98, 2-23.	3.0	220
519	When to stop managing or surveying cryptic threatened species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13936-13940.	7.1	161
520	Effectiveness of marine reserve networks in representing biodiversity and minimizing impact to fishermen: a comparison of two approaches used in California. Conservation Letters, 2008, 1, 44-51.	5.7	82
521	Diminishing return on investment for biodiversity data in conservation planning. Conservation Letters, 2008, 1, 190-198.	5.7	128
522	The Cost of Conservation. Science, 2008, 321, 340-340.	12.6	13

#	Article	IF	CITATIONS
523	PLANNING FOR PERSISTENCE IN MARINE RESERVES: A QUESTION OF CATASTROPHIC IMPORTANCE. , 2008, 18, 670-680.		134
524	The Role of Landscapeâ€Dependent Disturbance and Dispersal in Metapopulation Persistence. American Naturalist, 2008, 172, 563-575.	2.1	51
525	Change the IUCN Protected Area Categories to Reflect Biodiversity Outcomes. PLoS Biology, 2008, 6, e66.	5.6	53
526	Sensitivity analysis of spatially aggregated responses: A gradientâ€based method. International Journal of Geographical Information Science, 2008, 22, 575-599.	4.8	3
527	Assisted Colonization and Rapid Climate Change. Science, 2008, 321, 345-346.	12.6	786
528	Cost-effective global conservation spending is robust to taxonomic group. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6498-6501.	7.1	170
529	Cost-effective priorities for global mammal conservation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11446-11450.	7.1	111
530	METAPOPULATION PERSISTENCE IN A DYNAMIC LANDSCAPE: MORE HABITAT OR BETTER STEWARDSHIP. , 2008, 18, 590-598.		15
531	Protecting Biodiversity when Money Matters: Maximizing Return on Investment. PLoS ONE, 2008, 3, e1515.	2.5	72
532	Improving methods for allocating resources among threatened species: the case for a new national approach in New Zealand. Pacific Conservation Biology, 2008, 14, 154.	1.0	42
533	Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting. PLoS ONE, 2008, 3, e2586.	2.5	153
534	Reducing bycatch in the South African pelagic longline fishery: the utility of different approaches to fisheries closures. Endangered Species Research, 2008, 5, 291-299.	2.4	69
535	Environmental factors that influence the distribution of coral reef fishes: modeling occurrence data for broad-scale conservation and management. Marine Ecology - Progress Series, 2008, 361, 1-13.	1.9	51
536	Applying landscape-ecological principles to regional conservation: the WildCountry Project in Australia., 2007,, 192-213.		10
537	Using multiple survey methods to detect terrestrial reptiles and mammals: what are the most successful and cost-efficient combinations?. Wildlife Research, 2007, 34, 218.	1.4	95
538	A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environment International, 2007, 33, 974-984.	10.0	170
539	The impact of marine reserves on nekton diversity and community composition in subtropical eastern Australia. Biological Conservation, 2007, 136, 455-469.	4.1	13
540	Maximizing return on investment in conservation. Biological Conservation, 2007, 139, 375-388.	4.1	302

#	Article	IF	CITATIONS
541	Optimizing landscape configuration: A case study of woodland birds in the Mount Lofty Ranges, South Australia. Landscape and Urban Planning, 2007, 81, 56-66.	7.5	54
542	Improving the Key Biodiversity Areas Approach for Effective Conservation Planning. BioScience, 2007, 57, 256-261.	4.9	62
543	How patch configuration affects the impact of disturbances on metapopulation persistence. Theoretical Population Biology, 2007, 72, 77-85.	1.1	55
544	MAKING CONSERVATION DECISIONS UNDER UNCERTAINTY FOR THE PERSISTENCE OF MULTIPLE SPECIES. , 2007, 17, 251-265.		67
545	Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biology, 2007, 5, e223.	5.6	398
546	Optimal Conservation of Migratory Species. PLoS ONE, 2007, 2, e751.	2.5	292
547	Making monitoring meaningful. Austral Ecology, 2007, 32, 485-491.	1.5	180
548	Habitat structure is more important than vegetation composition for localâ€level management of native terrestrial reptile and small mammal species living in urban remnants: A case study from Brisbane, Australia. Austral Ecology, 2007, 32, 669-685.	1.5	137
549	Spatial patterns of kangaroo density across the South Australian pastoral zone over 26Âyears: aggregation during drought and suggestions of long distance movement. Journal of Applied Ecology, 2007, 44, 1068-1079.	4.0	22
550	How can you conserve species that haven't been found?. Journal of Biogeography, 2007, 34, 758-759.	3.0	41
551	The Effect of Incremental Reserve Design and Changing Reservation Goals on the Long-Term Efficiency of Reserve Systems. Conservation Biology, 2007, 21, 346-354.	4.7	51
552	Active Adaptive Management for Conservation. Conservation Biology, 2007, 21, 956-963.	4.7	260
553	Evolutionary Responses to Climate Change. Conservation Biology, 2007, 21, 1353-1355.	4.7	220
554	Effectiveness of Surrogate Taxa in the Design of Coral Reef Reserve Systems in the Indoâ€Pacific. Conservation Biology, 2007, 21, 1584-1593.	4.7	35
555	Incorporating the Effects of Socioeconomic Uncertainty into Priority Setting for Conservation Investment. Conservation Biology, 2007, 21, 1463-1474.	4.7	70
556	Minimise long-term loss or maximise short-term gain?. Ecological Modelling, 2007, 201, 67-74.	2.5	44
557	Catastrophe management and inter-reserve distance for marine reserve networks. Ecological Modelling, 2007, 201, 82-88.	2.5	13
558	Can culling a threatened species increase its chance of persisting?. Ecological Modelling, 2007, 201, 11-18.	2.5	9

#	Article	IF	Citations
559	Conservation planning with irreplaceability: does the method matter?. Biodiversity and Conservation, 2007, 16, 245-258.	2.6	76
560	Rejoinder: uncertainty and decision making. Ecology Letters, 2006, 9, 13-14.	6.4	1
561	Optimizing Presence–Absence Surveys For Detecting Population Trends. Journal of Wildlife Management, 2006, 70, 8-18.	1.8	43
562	A new method for conservation planning for the persistence of multiple species. Ecology Letters, 2006, 9, 1049-1060.	6.4	126
563	Is landscape context important for riparian conservation? Birds in grassy woodland. Biological Conservation, 2006, 127, 201-214.	4.1	87
564	The importance of forest area and configuration relative to local habitat factors for conserving forest mammals: A case study of koalas in Queensland, Australia. Biological Conservation, 2006, 132, 153-165.	4.1	164
565	Unplanned land clearing of Colombian rainforests: Spreading like disease?. Landscape and Urban Planning, 2006, 77, 240-254.	7.5	62
566	THE ROLE OF HABITAT DISTURBANCE AND RECOVERY IN METAPOPULATION PERSISTENCE. Ecology, 2006, 87, 855-863.	3.2	55
567	Accounting for uncertainty in marine reserve design. Ecology Letters, 2006, 9, 2-11.	6.4	144
568	Optimal eradication: when to stop looking for an invasive plant. Ecology Letters, 2006, 9, 759-766.	6.4	178
569	Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 2006, 9, 1136-1145.	6.4	403
570	Modeling Species' Distributions to Improve Conservation in Semiurban Landscapes: Koala Case Study. Conservation Biology, 2006, 20, 449-459.	4.7	78
571	Ecological-Economic Modeling for Biodiversity Management: Potential, Pitfalls, and Prospects. Conservation Biology, 2006, 20, 1034-1041.	4.7	123
572	Objectives for Multiple-Species Conservation Planning. Conservation Biology, 2006, 20, 871-881.	4.7	141
573	Accounting for Management Costs in Sensitivity Analyses of Matrix Population Models. Conservation Biology, 2006, 20, 893-905.	4.7	76
574	Sensitivity of Marine-Reserve Design to the Spatial Resolution of Socioeconomic Data. Conservation Biology, 2006, 20, 1191-1202.	4.7	92
575	Presence? Absence versus Abundance Data for Monitoring Threatened Species. Conservation Biology, 2006, 20, 1679-1687.	4.7	149
576	Characterizing a tropical deforestation wave: a dynamic spatial analysis of a deforestation hotspot in the Colombian Amazon. Global Change Biology, 2006, 12, 1409-1420.	9.5	55

#	Article	IF	Citations
577	Prioritizing global conservation efforts. Nature, 2006, 440, 337-340.	27.8	497
578	Review of the ecology of Australian urban fauna: A focus on spatially explicit processes. Austral Ecology, 2006, 31, 126-148.	1.5	145
579	Modelling the conversion of Colombian lowland ecosystems since 1940: Drivers, patterns and rates. Journal of Environmental Management, 2006, 79, 74-87.	7.8	130
580	Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems and Environment, 2006, 114, 369-386.	5. 3	345
581	Should Managed Populations Be Monitored Every Year?. , 2006, 16, 807-819.		81
582	Does colonization asymmetry matter in metapopulations?. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1637-1642.	2.6	67
583	Improving the efficiency of wildlife monitoring by estimating detectability: a case study of foxes (Vulpes vulpes) on the Eyre Peninsula, South Australia. Wildlife Research, 2005, 32, 253.	1.4	40
584	Establishing Representative No-Take Areas in the Great Barrier Reef: Large-Scale Implementation of Theory on Marine Protected Areas. Conservation Biology, 2005, 19, 1733-1744.	4.7	498
585	A theory for optimal monitoring of marine reserves. Ecology Letters, 2005, 8, 829-837.	6.4	78
586	Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters, 2005, 8, 1235-1246.	6.4	712
587	Of sheep and rain: large-scale population dynamics of the red kangaroo. Journal of Animal Ecology, 2005, 74, 22-30.	2.8	44
588	Predicting the impact of livestock grazing on birds using foraging height data. Journal of Applied Ecology, 2005, 42, 400-408.	4.0	113
589	Turning up the heat on hotspots. Nature, 2005, 436, 919-920.	27.8	115
590	Assessing the impacts of grazing levels on bird density in woodland habitat: a Bayesian approach using expert opinion. Environmetrics, 2005, 16, 717-747.	1.4	74
591	Intertidal habitat conservation: identifying conservation targets in the absence of detailed biological information. Aquatic Conservation: Marine and Freshwater Ecosystems, 2005, 15, 271-288.	2.0	20
592	Measuring and Incorporating Vulnerability into Conservation Planning. Environmental Management, 2005, 35, 527-543.	2.7	246
593	Efficiency, costs and trade-offs in marine reserve system design. Environmental Modeling and Assessment, 2005, 10, 203-213.	2.2	193
594	Theory for Designing Nature Reserves for Single Species. American Naturalist, 2005, 165, 250-257.	2.1	85

#	Article	IF	Citations
595	ECOLOGY: Enhanced: Are U.S. Coral Reefs on the Slippery Slope to Slime?. Science, 2005, 307, 1725-1726.	12.6	393
596	Modeling the age of tropical moist forest fragments in heavily-cleared lowland landscapes of Colombia. Forest Ecology and Management, 2005, 208, 249-260.	3.2	46
597	Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 2005, 122, 99-112.	4.1	246
598	OPTIMIZING ALLOCATION OF MONITORING EFFORT UNDER ECONOMIC AND OBSERVATIONAL CONSTRAINTS. Journal of Wildlife Management, 2005, 69, 473-482.	1.8	212
599	The Roles of Spatial Heterogeneity and Ecological Processes in Conservation Planning. , 2005, , 389-406.		23
600	TREND DETECTION IN SOURCE–SINK SYSTEMS: WHEN SHOULD SINK HABITATS BE MONITORED?. , 2005, 15, 326-334.		20
601	THE POWER OF EXPERT OPINION IN ECOLOGICAL MODELS USING BAYESIAN METHODS: IMPACT OF GRAZING ON BIRDS. , 2005, 15, 266-280.		181
602	A SPATIALLY EXPLICIT HABITAT SELECTION MODEL INCORPORATING HOME RANGE BEHAVIOR. Ecology, 2005, 86, 1199-1205.	3.2	119
603	Effects of marine reserve protection on the mud crab Scylla serrata in a sex-biased fishery in subtropical Australia. Marine Ecology - Progress Series, 2005, 295, 201-213.	1.9	36
604	Metapopulation Dynamics and Reserve Network Design. , 2004, , 541-564.		13
605	Does conservation planning matter in a dynamic and uncertain world? Ecology Letters, 2004, 7, 615-622.	6.4	385
606	Minimizing the cost of environmental management decisions by optimizing statistical thresholds. Ecology Letters, 2004, 7, 669-675.	6.4	175
607	Linking Wild and Captive Populations to Maximize Species Persistence: Optimal Translocation Strategies. Conservation Biology, 2004, 18, 1304-1314.	4.7	92
608	Habitat Selection and Population Regulation in Temporally Fluctuating Environments. American Naturalist, 2004, 164, E103-E114.	2.1	40
609	Comparing predictions of extinction risk using models and subjective judgement. Acta Oecologica, 2004, 26, 67-74.	1.1	66
610	Optimizing reserve expansion for disjunct populations of San Joaquin kit fox. Biological Conservation, 2004, 117, 61-72.	4.1	30
611	DO HARVEST REFUGES BUFFER KANGAROOS AGAINST EVOLUTIONARY RESPONSES TO SELECTIVE HARVESTING?. Ecology, 2004, 85, 2003-2017.	3.2	76
612	IMPROVING PRECISION AND REDUCING BIAS IN BIOLOGICAL SURVEYS: ESTIMATING FALSE-NEGATIVE ERROR RATES., 2003, 13, 1790-1801.		633

#	Article	IF	Citations
613	Title is missing!. Biodiversity and Conservation, 2003, 12, 2393-2413.	2.6	22
614	Effects of landscape pattern on bird species distribution in the Mt. Lofty Ranges, South Australia. Landscape Ecology, 2003, 18, 413-426.	4.2	73
615	Reliability of Relative Predictions in Population Viability Analysis. Conservation Biology, 2003, 17, 982-989.	4.7	120
616	Applying a Decision-Theory Framework to Landscape Planning for Biodiversity: Follow-Up to Watson et al Conservation Biology, 2003, 17, 327-329.	4.7	30
617	ECOLOGICAL CRITERIA FOR EVALUATING CANDIDATE SITES FOR MARINE RESERVES. , 2003, 13, 199-214.		344
618	POPULATION MODELS FOR MARINE RESERVE DESIGN: A RETROSPECTIVE AND PROSPECTIVE SYNTHESIS. , 2003, 13, 47-64.		309
619	USING SITING ALGORITHMS IN THE DESIGN OF MARINE RESERVE NETWORKS. , 2003, 13, 185-198.		172
620	ENSURING PERSISTENCE OF MARINE RESERVES: CATASTROPHES REQUIRE ADOPTING AN INSURANCE FACTOR. , 2003, 13, 8-24.		159
621	THE USE OF STOCHASTIC DYNAMIC PROGRAMMING IN OPTIMAL LANDSCAPE RECONSTRUCTION FOR METAPOPULATIONS., 2003, 13, 543-555.		89
622	Opportunity cost of ad hoc marine reserve design decisions: an example from South Australia. Marine Ecology - Progress Series, 2003, 253, 25-38.	1.9	123
623	ACTIVE ADAPTIVE MANAGEMENT IN INSECT PEST AND WEED CONTROL: INTERVENTION WITH A PLAN FOR LEARNING. , 2002, 12, 927-936.		136
624	Limits to the use of threatened species lists. Trends in Ecology and Evolution, 2002, 17, 503-507.	8.7	399
625	Patchy Populations in Stochastic Environments: Critical Number of Patches for Persistence. American Naturalist, 2002, 159, 128-137.	2.1	85
626	DO LIFE HISTORY TRAITS AFFECT THE ACCURACY OF DIFFUSION APPROXIMATIONS FOR MEAN TIME TO EXTINCTION?. , 2002, 12, 1163-1179.		21
627	The Focalâ€Species Approach and Landscape Restoration: a Critique. Conservation Biology, 2002, 16, 338-345.	4.7	256
628	Optimizing Habitat Protection Using Demographic Models of Population Viability. Conservation Biology, 2002, 16, 1386-1397.	4.7	75
629	Estimating bird species richness: How should repeat surveys be organized in time?. Austral Ecology, 2002, 27, 624-629.	1.5	51
630	How accurate are population models? Lessons from landscape-scale tests in a fragmented system. Ecology Letters, 2002, 6, 41-47.	6.4	89

#	Article	IF	CITATIONS
631	Mathematical Methods for Spatially Cohesive Reserve Design. Environmental Modeling and Assessment, 2002, 7, 107-114.	2.2	198
632	INFERRING PROCESS FROM PATTERN: CAN TERRITORY OCCUPANCY PROVIDE INFORMATION ABOUT LIFE HISTORY PARAMETERS?., 2001, 11, 1722-1737.		106
633	The use and abuse of population viability analysis. Trends in Ecology and Evolution, 2001, 16, 219-221.	8.7	415
634	Detecting environmental impacts on metapopulations of mound spring invertebrates. Environment International, 2001, 27, 225-229.	10.0	8
635	Assessing spatial PVA models of arboreal marsupials using significance tests and Bayesian statistics. Biological Conservation, 2001, 98, 191-200.	4.1	22
636	The Effect of Resource Aggregation at Different Scales: Optimal Foraging Behavior of Cotesia rubecula. American Naturalist, 2001, 158, 505-518.	2.1	13
637	Using Cox's proportional hazard models to implement optimal strategies: An example from behavioural ecology. Mathematical and Computer Modelling, 2001, 33, 597-607.	2.0	20
638	A Method for Setting the Size of Plant Conservation Target Areas. Conservation Biology, 2001, 15, 603-616.	4.7	66
639	Testing the Accuracy of Population Viability Analysis. Conservation Biology, 2001, 15, 1030-1038.	4.7	62
640	Optimal patch-leaving behaviour: a case study using the parasitoid Cotesia rubecula. Journal of Animal Ecology, 2001, 70, 683-691.	2.8	26
641	A landscape-scale test of the predictive ability of a spatially explicit model for population viability analysis. Journal of Applied Ecology, 2001, 38, 36-48.	4.0	23
642	Using stochastic dynamic programming to determine optimal fire management for Banksia ornata. Journal of Applied Ecology, 2001, 38, 585-592.	4.0	70
643	Competing harvesting strategies in a simulated population under uncertainty. Animal Conservation, 2001, 4, 157-167.	2.9	48
644	A simple landscape-scale test of a spatially explicit population model: patch occupancy in fragmented south-eastern Australian forests. Oikos, 2001, 92, 445-458.	2.7	17
645	Patch Dynamics and Metapopulation Theory: the Case of Successional Species. Journal of Theoretical Biology, 2001, 209, 333-344.	1.7	141
646	Population Viability Analysis. , 2001, , 831-843.		12
647	TESTING SPATIAL PVA MODELS OF AUSTRALIAN TREECREEPERS (AVES: CLIMACTERIDAE) IN FRAGMENTED FOREST., 2000, 10, 1722-1731.		29
648	Swapping space for time and unfair tests of ecological models. Austral Ecology, 2000, 25, 327-331.	1.5	13

#	Article	IF	CITATIONS
649	The genetic contribution of single male immigrants to small, inbred populations: a laboratory study using Drosophila melanogaster. Heredity, 2000, 84, 677-684.	2.6	32
650	Optimal release strategies for biological control agents: an application of stochastic dynamic programming to population management. Journal of Applied Ecology, 2000, 37, 77-86.	4.0	158
651	It's time to work together and stop duplicating conservation efforts …. Nature, 2000, 405, 393-393.	27.8	163
652	Population viability analysis for conservation: the good, the bad and the undescribed., 2000,, 97-112.		60
653	Mathematical Methods for Identifying Representative Reserve Networks. , 2000, , 291-306.		367
654	Marine protected areas for spatially structured exploited stocks. Marine Ecology - Progress Series, 2000, 192, 89-101.	1.9	116
655	Grazers and Diggers: Exploitation Competition and Coexistence among Foragers with Different Feeding Strategies on a Single Resource. American Naturalist, 2000, 155, 266-279.	2.1	50
656	CONSERVATION BIOLOGY:Preserving Diversity the U.S. Way. Science, 2000, 288, 983-983.	12.6	0
657	Bird Responses at Inherent and Induced Edges in the Murray Mallee, South Australia. 2. Nest Predation as an Edge Effect. Emu, 1999, 99, 170-175.	0.6	20
658	Bird Responses at Inherent and Induced Edges in the Murray Mallee, South Australia. 1. Differences in Abundance and Diversity. Emu, 1999, 99, 157-169.	0.6	41
659	OPTIMAL FIRE MANAGEMENT FOR MAINTAINING COMMUNITY DIVERSITY. , 1999, 9, 880-892.		120
660	A tree hollow dynamics simulation model. Forest Ecology and Management, 1999, 123, 179-194.	3.2	46
661	Effects of data characteristics on the results of reserve selection algorithms. Journal of Biogeography, 1999, 26, 179-191.	3.0	49
662	HARVESTING A TWOâ€PATCH PREDATORâ€PREY METAPOPULATION. Natural Resource Modelling, 1999, 12, 481-498.	2.0	12
663	Optimal Fire Management for Maintaining Community Diversity. , 1999, 9, 880.		1
664	The business of biodiversity. Australian Zoologist, 1999, 31, 3-5.	1.1	10
665	Optimal Harvesting for a Predator–Prey Metapopulation. Bulletin of Mathematical Biology, 1998, 60, 49-65.	1.9	33
666	Modelling dispersal behaviour on a fractal landscape. Environmental Modelling and Software, 1998, 14, 103-113.	4.5	19

#	Article	IF	CITATIONS
667	Fixation probability of an allele in a subdivided population with asymmetric migration. Genetical Research, 1998, 71, 237-245.	0.9	13
668	Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biological Conservation, 1997, 80, 207-219.	4.1	274
669	Optimality in reserve selection algorithms: When does it matter and how much?. Biological Conservation, 1996, 76, 259-267.	4.1	258
670	Modelling the inter-relationships between habitat patchiness, dispersal capability and metapopulation persistence of the endangered species, Leadbeater's possum, in south-eastern Australia. Landscape Ecology, 1996, 11, 79-105.	4.2	56
671	Ranking Conservation and Timber Management Options for Leadbeater's Possum in Southeastern Australia Using Population Viability Analysis. Conservation Biology, 1996, 10, 235-251.	4.7	134
672	Diel vertical migration: modelling light-mediated mechanisms. Journal of Plankton Research, 1996, 18, 2199-2222.	1.8	40
673	Applications of Population Viability Analysis in Conservation Biology in Australia. Geospatial Technology and the Role of Location in Science, 1996, , 102-110.	0.5	2
674	The fire and flammability niches in plant communities. Journal of Theoretical Biology, 1995, 174, 97-108.	1.7	10
675	Modelling the viability of metapopulations of the endangered Leadbeater's possum in south-eastern Australia. Biodiversity and Conservation, 1995, 4, 984-1018.	2.6	33
676	A Model to Explain Ecological Parapatry. American Naturalist, 1995, 145, 935-947.	2.1	40
677	A review of the generic computer programs ALEX, RAMAS/space and VORTEX for modelling the viability of wildlife metapopulations. Ecological Modelling, 1995, 82, 161-174.	2.5	130
678	Modelling the impacts of wildfire on the viability of metapopulations of the endangered Australian species of arboreal marsupial, Leadbeater's Possum. Forest Ecology and Management, 1995, 74, 197-222.	3.2	41
679	A Stochastic Metapopulation Model with Variability in Patch Size and Position. Theoretical Population Biology, 1995, 48, 333-360.	1.1	145
680	The conservation of arboreal marsupials in the montane ash forests of the central highlands of Victoria, south-eastern Australia — VII. Modelling the persistence of Leadbeater's possum in response to modified timber harvesting practices. Biological Conservation, 1995, 73, 239-257.	4.1	35
681	Modelling the reintroduction of the greater bilby Macrotis lagotis using the metapopulation model Analysis of the Likelihood of Extinction (ALEX). Biological Conservation, 1995, 73, 151-160.	4.1	48
682	Area requirements for viable populations of the Australian gliding marsupial Petaurus australis. Biological Conservation, 1995, 73, 161-167.	4.1	88
683	Alex: a model for the viability analysis of spatially structured populations. Biological Conservation, 1995, 73, 143-150.	4.1	37
684	Modelling the reintroduction of the greater bilby Macrotis lagotis using the metapopulation model analysis of the likelihood of extinction (ALEX). Biological Conservation, 1995, 73, 151-160.	4.1	13

#	Article	IF	Citations
685	Area requirements for viable populations of the Australian gliding marsupial Petaurus australis. Biological Conservation, 1995, 73, 161-167.	4.1	20
686	Larval dispersion along a straight coast with tidal currents: complex distribution patterns from a simple model. Marine Ecology - Progress Series, 1995, 122, 59-71.	1.9	31
687	Optimal harvesting strategies for a metapopulation. Bulletin of Mathematical Biology, 1994, 56, 107-127.	1.9	24
688	Optimal harvesting strategies for a metapopulation. Bulletin of Mathematical Biology, 1994, 56, 107-127.	1.9	71
689	Metapopulation viability analysis of the greater glider Petauroides volans in a wood production area. Biological Conservation, 1994, 70, 227-236.	4.1	74
690	A framework for the improved management of threatened species based on Population Viability Analysis (PVA). Pacific Conservation Biology, 1994, 1, 39.	1.0	140
691	Population Cycling in Space-Limited Organisms Subject to Density-Dependent Predation. American Naturalist, 1994, 143, 563-582.	2.1	18
692	Impact of Elevated Atmospheric CO2 on Biodiversity: Mechanistic Population-Dynamic Perspective. Australian Journal of Botany, 1993, 41, 11.	0.6	8
693	Habitat Selection by Two Species of Nectarivore: Habitat Quality Isolines. Ecology, 1992, 73, 1903-1912.	3.2	44
694	A metapopulation simulation model for assessing the likelihood of plant and animal extinctions. Mathematics and Computers in Simulation, 1992, 33, 367-372.	4.4	39
695	The role of population viability analysis in forest management. , 1991, , 35-39.		10
696	Spatial Population Dynamics of a Marine Organism with a Complex Life Cycle. Ecology, 1990, 71, 973-985.	3.2	114
697	Risk-Averse Foraging in Bees: A Comment on the Mode of Harder and Real. Ecology, 1990, 71, 1622-1624.	3.2	25
698	Optimal patch use by a territorial forager. Journal of Theoretical Biology, 1990, 145, 343-353.	1.7	14
699	The Distribution and Abundance of Resources Encountered by a Forager. American Naturalist, 1989, 133, 42-60.	2.1	86
700	A model of resource renewal and depletion: Applications to the distribution and abundance of nectar in flowers. Theoretical Population Biology, 1988, 33, 138-160.	1.1	19
701	Recruitment dynamics in complex life cycles. Science, 1988, 241, 1460-1466.	12.6	997
702	Decision-making with ecological process for coastal and marine planning: current literature and future directions. Aquatic Ecology, 0 , 1 .	1.5	10

#	Article	lF	CITATIONS
703	Nature Conservation $\hat{a} \in \hat{a}$ a new dimension in Open Access publishing bridging science and application. Nature Conservation, 0, 1, 1-10.	0.0	5