Sachdev S Sidhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1319614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifaceted N-Degron Recognition and Ubiquitylation by GID/CTLH E3 Ligases. Journal of Molecular Biology, 2022, 434, 167347.	2.0	15
2	MMD-associated <i>RNF213</i> SNPs encode dominant-negative alleles that globally impair ubiquitylation. Life Science Alliance, 2022, 5, e202000807.	1.3	7
3	Synthetic antibodies block receptor binding and currentâ€inhibiting effects of αâ€cobratoxin from <i>Naja kaouthia</i> . Protein Science, 2022, 31, e4296.	3.1	5
4	Panel of Engineered Ubiquitin Variants Targeting the Family of Human Ubiquitin Interacting Motifs. ACS Chemical Biology, 2022, 17, 941-956.	1.6	5
5	Peptide–Antibody Fusions Engineered by Phage Display Exhibit an Ultrapotent and Broad Neutralization of SARS-CoV-2 Variants. ACS Chemical Biology, 2022, 17, 1978-1988.	1.6	7
6	A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels. International Journal of Molecular Sciences, 2022, 23, 7337.	1.8	3
7	A Designer Nanoparticle Platform for Controlled Intracellular Delivery of Bioactive Macromolecules: Inhibition of Ubiquitin-Specific Protease 7 in Breast Cancer Cells. ACS Chemical Biology, 2022, 17, 1853-1865.	1.6	3
8	A T cell redirection platform for co-targeting dual antigens on solid tumors. MAbs, 2021, 13, 1933690.	2.6	3
9	Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. Journal of Virology, 2021, 95, .	1.5	3
10	Anti-ferroptotic mechanism of IL4i1-mediated amino acid metabolism. ELife, 2021, 10, .	2.8	58
11	Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Communications Biology, 2021, 4, 475.	2.0	126
12	SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 2021, 13, .	5.8	215
13	CellectSeq: In silico discovery of antibodies targeting integral membrane proteins combining in situ selections and next-generation sequencing. Communications Biology, 2021, 4, 561.	2.0	8
14	A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Molecular Medicine, 2021, 13, e13977.	3.3	30
15	Inhibition of Cancer Cell Adhesion, Migration and Proliferation by a Bispecific Antibody that Targets two Distinct Epitopes on αv Integrins. Journal of Molecular Biology, 2021, 433, 167090.	2.0	2
16	Comprehensive Assessment of the Relationship Between Siteâ^'2 Specificity and Helix α2 in the Erbin PDZ Domain. Journal of Molecular Biology, 2021, 433, 167115.	2.0	0
17	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	2.0	31
18	Systematic Engineering of Optimized Autonomous Heavy-Chain Variable Domains. Journal of Molecular Biology, 2021, 433, 167241.	2.0	3

#	Article	IF	CITATIONS
19	A Panel of Engineered Ubiquitin Variants Targeting the Family of Domains Found in Ubiquitin Specific Proteases (DUSPs). Journal of Molecular Biology, 2021, 433, 167300.	2.0	5
20	USP10 Promotes Fibronectin Recycling, Secretion, and Organization. , 2021, 62, 15.		3
21	The Deleterious Effects of Shiga Toxin Type 2 Are Neutralized In Vitro by FabF8:Stx2 Recombinant Monoclonal Antibody. Toxins, 2021, 13, 825.	1.5	2
22	Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands. Nature Communications, 2021, 12, 7032.	5.8	8
23	Performance of soluble Klotho assays in clinical samples of kidney disease. CKJ: Clinical Kidney Journal, 2020, 13, 235-244.	1.4	38
24	Structural and Functional Analysis of Ubiquitin-based Inhibitors That Target the Backsides of E2 Enzymes. Journal of Molecular Biology, 2020, 432, 952-966.	2.0	22
25	Comprehensive analysis of all evolutionary paths between two divergent PDZ domain specificities. Protein Science, 2020, 29, 433-442.	3.1	17
26	Discovery of Protein-Protein Interaction Inhibitors by Integrating Protein Engineering and Chemical Screening Platforms. Cell Chemical Biology, 2020, 27, 1441-1451.e7.	2.5	13
27	A phageâ€displayed singleâ€chain Fab library optimized for rapid production of singleâ€chain IgGs. Protein Science, 2020, 29, 2075-2084.	3.1	3
28	The RNA-Binding Protein Rasputin/G3BP Enhances the Stability and Translation of Its Target mRNAs. Cell Reports, 2020, 30, 3353-3367.e7.	2.9	33
29	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	5.1	380
30	<i>In situ</i> antibody phage display yields optimal inhibitors of integrin α11/β1. MAbs, 2020, 12, 1717265.	2.6	13
31	Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathogens, 2020, 16, e1008231.	2.1	11
32	A Synthetic Human Antibody Antagonizes IL-18RÎ ² Signaling Through an Allosteric Mechanism. Journal of Molecular Biology, 2020, 432, 1169-1182.	2.0	5
33	Bead-based multiplex detection of dengue biomarkers in a portable imaging device. Biomedical Optics Express, 2020, 11, 6154.	1.5	8
34	Largeâ€scale survey and database of high affinity ligands for peptide recognition modules. Molecular Systems Biology, 2020, 16, e9310.	3.2	22
35	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354.	0.4	16
36	Identification and Characterization of Mutations in Ubiquitin Required for Non-covalent Dimer Formation. Structure, 2019, 27, 1452-1459.e4.	1.6	5

#	Article	IF	CITATIONS
37	Optimization of peptidic HIVâ€l fusion inhibitor T20 by phage display. Protein Science, 2019, 28, 1501-1512.	3.1	4
38	A Potent Anti-SpuE Antibody Allosterically Inhibits Type III Secretion System and Attenuates Virulence of Pseudomonas Aeruginosa. Journal of Molecular Biology, 2019, 431, 4882-4896.	2.0	9
39	Protein engineering of a ubiquitin-variant inhibitor of APC/C identifies a cryptic K48 ubiquitin chain binding site. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17280-17289.	3.3	22
40	A rapid in vitro methodology for simultaneous target discovery and antibody generation against functional cell subpopulations. Scientific Reports, 2019, 9, 842.	1.6	10
41	Structural and Functional Characterization of Ubiquitin Variant Inhibitors of USP15. Structure, 2019, 27, 590-605.e5.	1.6	47
42	Inhibition of Marburg Virus RNA Synthesis by a Synthetic Anti-VP35 Antibody. ACS Infectious Diseases, 2019, 5, 1385-1396.	1.8	14
43	Emerging drug development technologies targeting ubiquitination for cancer therapeutics. , 2019, 199, 139-154.		52
44	Innate Control of Tissue-Reparative Human Regulatory T Cells. Journal of Immunology, 2019, 202, 2195-2209.	0.4	35
45	The ubiquitin interacting motifs of USP37 act on the proximal Ub of a di-Ub chain to enhance catalytic efficiency. Scientific Reports, 2019, 9, 4119.	1.6	11
46	Potent Neutralization of Staphylococcal Enterotoxin B In Vivo by Antibodies that Block Binding to the T-Cell Receptor. Journal of Molecular Biology, 2019, 431, 4354-4367.	2.0	14
47	Dimerization of a ubiquitin variant leads to high affinity interactions with a ubiquitin interacting motif. Protein Science, 2019, 28, 848-856.	3.1	9
48	Yeast Two-Hybrid Analysis for Ubiquitin Variant Inhibitors of Human Deubiquitinases. Journal of Molecular Biology, 2019, 431, 1160-1171.	2.0	6
49	A Multiplexed, Point-of-Care Sensing for Dengue. , 2019, , .		3
50	Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. Journal of Biological Chemistry, 2019, 294, 1396-1409.	1.6	3
51	Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis. Protein Science, 2019, 28, 403-413.	3.1	10
52	Allosteric Modulation of Binding Specificity by Alternative Packing of Protein Cores. Journal of Molecular Biology, 2019, 431, 336-350.	2.0	20
53	Blockade of TGF-Î ² signaling with novel synthetic antibodies limits immune exclusion and improves chemotherapy response in metastatic ovarian cancer models. Oncolmmunology, 2019, 8, e1539613.	2.1	33
54	EPH Profiling of BTIC Populations in Glioblastoma Multiforme Using CyTOF. Methods in Molecular Biology, 2019, 1869, 155-168.	0.4	7

#	Article	IF	CITATIONS
55	Peptides meet ubiquitin: Simple interactions regulating complex cell signaling. Peptide Science, 2019, 111, e24091.	1.0	4
56	Tailored tetravalent antibodies potently and specifically activate Wnt/Frizzled pathways in cells, organoids and mice. ELife, 2019, 8, .	2.8	67
57	Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2836-2841.	3.3	44
58	Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics. Molecular Cell, 2018, 70, 211-227.e8.	4.5	145
59	Allosteric inhibitors hit USP7 hard. Nature Chemical Biology, 2018, 14, 110-111.	3.9	15
60	Effects of erythropoietin receptor activity on angiogenesis, tubular injury, and fibrosis in acute kidney injury: a "U-shaped―relationship. American Journal of Physiology - Renal Physiology, 2018, 314, F501-F516.	1.3	27
61	Construction of Synthetic Antibody Phage-Display Libraries. Methods in Molecular Biology, 2018, 1701, 45-60.	0.4	20
62	Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature, 2018, 563, 559-563.	13.7	84
63	Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims. Toxins, 2018, 10, 534.	1.5	64
64	Generating Intracellular Modulators of E3 Ligases and Deubiquitinases from Phage-Displayed Ubiquitin Variant Libraries. Methods in Molecular Biology, 2018, 1844, 101-119.	0.4	6
65	Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Molecular Pharmaceutics, 2018, 15, 5217-5226.	2.3	16
66	A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs, 2018, 10, 1157-1167.	2.6	39
67	Fc Engineering: Tailored Synthetic Human IgG1-Fc Repertoire for High-Affinity Interaction with FcRn at pH 6.0. Methods in Molecular Biology, 2018, 1827, 399-417.	0.4	1
68	Structure-Guided Combinatorial Engineering Facilitates Affinity and Specificity Optimization of Anti-CD81 Antibodies. Journal of Molecular Biology, 2018, 430, 2139-2152.	2.0	14
69	Construction of Synthetic Phage Displayed Fab Library with Tailored Diversity. Journal of Visualized Experiments, 2018, , .	0.2	3
70	A Structure-Based Strategy for Engineering Selective Ubiquitin Variant Inhibitors of Skp1-Cul1-F-Box Ubiquitin Ligases. Structure, 2018, 26, 1226-1236.e3.	1.6	27
71	Host Protein BAC3 is a Negative Regulator of Lassa VLP Egress. Diseases (Basel, Switzerland), 2018, 6, 64.	1.0	11
72	Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR–Cas9 genome-editing efficiency. Nature Biotechnology, 2018, 36, 95-102.	9.4	206

#	Article	IF	CITATIONS
73	Creation of Phosphotyrosine Superbinders by Directed Evolution of an SH2 Domain. Methods in Molecular Biology, 2017, 1555, 225-254.	0.4	7
74	Structural and functional characterization of a ubiquitin variant engineered for tight and specific binding to an alphaâ€helical ubiquitin interacting motif. Protein Science, 2017, 26, 1060-1069.	3.1	20
75	Structure-Directed and Tailored Diversity Synthetic Antibody Libraries Yield Novel Anti-EGFR Antagonists. ACS Chemical Biology, 2017, 12, 1381-1389.	1.6	16
76	Generation and Validation of Intracellular Ubiquitin Variant Inhibitors for USP7 and USP10. Journal of Molecular Biology, 2017, 429, 3546-3560.	2.0	44
77	Fluorescenceâ€based <scp>ATG</scp> 8 sensors monitor localization and function of <scp>LC</scp> 3/ <scp>GABARAP</scp> proteins. EMBO Journal, 2017, 36, 549-564.	3.5	49
78	A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. Nature Nanotechnology, 2017, 12, 1190-1198.	15.6	42
79	A General Strategy for Discovery of Inhibitors and Activators of RING and U-box E3 Ligases with Ubiquitin Variants. Molecular Cell, 2017, 68, 456-470.e10.	4.5	56
80	Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure, 2017, 25, 1598-1610.e3.	1.6	105
81	Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. Journal of Virology, 2017, 91, .	1.5	37
82	Engineering cell signaling modulators from native protein–protein interactions. Current Opinion in Structural Biology, 2017, 45, 25-35.	2.6	13
83	Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nature Medicine, 2017, 23, 60-68.	15.2	261
84	A Highly Diverse and Functional NaÃ ⁻ ve Ubiquitin Variant Library for Generation of Intracellular Affinity Reagents. Journal of Molecular Biology, 2017, 429, 115-127.	2.0	18
85	Proteinâ€phosphotyrosine proteome profiling by superbinderâ€6H2 domain affinity purification mass spectrometry, sSH2â€APâ€MS. Proteomics, 2017, 17, 1600360.	1.3	21
86	Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds. Frontiers in Immunology, 2017, 8, 38.	2.2	80
87	Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathogens, 2017, 13, e1006132.	2.1	43
88	Potent and selective inhibition of pathogenic viruses by engineered ubiquitin variants. PLoS Pathogens, 2017, 13, e1006372.	2.1	48
89	The influence of microRNAs and poly(A) tail length on endogenous mRNA–protein complexes. Genome Biology, 2017, 18, 211.	3.8	46
90	Synthetic Antibodies in Infectious Disease. Advances in Experimental Medicine and Biology, 2017, 1053, 79-98.	0.8	3

#	Article	IF	CITATIONS
91	Intracellular targeting with engineered proteins. F1000Research, 2016, 5, 1947.	0.8	30
92	Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3527-3532.	3.3	61
93	ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. Journal of Virology, 2016, 90, 9163-9171.	1.5	60
94	Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8705-8710.	3.3	36
95	Cryo-EM of Mitotic Checkpoint Complex-Bound APC/C Reveals Reciprocal and Conformational Regulation of Ubiquitin Ligation. Molecular Cell, 2016, 63, 593-607.	4.5	123
96	Magnetite Biomineralization in Magnetospirillum magneticum Is Regulated by a Switch-like Behavior in the HtrA Protease MamE. Journal of Biological Chemistry, 2016, 291, 17941-17952.	1.6	23
97	PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nature Cell Biology, 2016, 18, 803-813.	4.6	95
98	Cytokine Activation by Antibody Fragments Targeted to Cytokine-Receptor Signaling Complexes. Journal of Biological Chemistry, 2016, 291, 447-461.	1.6	9
99	Synthetic Antibodies Inhibit Bcl-2-associated X Protein (BAX) through Blockade of the N-terminal Activation Site. Journal of Biological Chemistry, 2016, 291, 89-102.	1.6	25
100	Rapid isolation of peptidic inhibitors of the solute carrier family transporters OATP1B1 and OATP1B3 by cell-based phage display selections. Biochemical and Biophysical Research Communications, 2016, 473, 370-376.	1.0	5
101	A high-throughput pipeline for the production of synthetic antibodies for analysis of ribonucleoprotein complexes. Rna, 2016, 22, 636-655.	1.6	22
102	A Potent <scp>d</scp> -Protein Antagonist of VEGF-A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating <i>in Vivo</i> . ACS Chemical Biology, 2016, 11, 1058-1065.	1.6	69
103	System-Wide Modulation of HECT E3 Ligases with Selective Ubiquitin Variant Probes. Molecular Cell, 2016, 62, 121-136.	4.5	142
104	Structural interplay between germline interactions and adaptive recognition determines the bandwidth of TCR-peptide-MHC cross-reactivity. Nature Immunology, 2016, 17, 87-94.	7.0	122
105	Renal Production, Uptake, and Handling of Circulating αKlotho. Journal of the American Society of Nephrology: JASN, 2016, 27, 79-90.	3.0	203
106	Scalable High Throughput Selection From Phage-displayed Synthetic Antibody Libraries. Journal of Visualized Experiments, 2015, , 51492.	0.2	22
107	Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biology, 2015, 16, 94.	3.8	80
108	The Cdc15 and Imp2 SH3 domains cooperatively scaffold a network of proteins that redundantly ensure efficient cell division in fission yeast. Molecular Biology of the Cell, 2015, 26, 256-269.	0.9	51

#	Article	IF	CITATIONS
109	Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathy-specific point mutations in polyomavirus JC capsid viral protein 1. MAbs, 2015, 7, 681-692.	2.6	19
110	MicroPET/CT imaging of patient-derived pancreatic cancer xenografts implanted subcutaneously or orthotopically in NOD-scid mice using 64Cu-NOTA-panitumumab F(ab')2 fragments. Nuclear Medicine and Biology, 2015, 42, 71-77.	0.3	35
111	A High Through-put Platform for Recombinant Antibodies to Folded Proteins. Molecular and Cellular Proteomics, 2015, 14, 2833-2847.	2.5	100
112	A switchable yeast display/secretion system. Protein Engineering, Design and Selection, 2015, 28, 317-325.	1.0	52
113	High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015, 163, 1515-1526.	13.5	1,339
114	The demonstration of $\hat{I}\pm$ Klotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrology Dialysis Transplantation, 2015, 30, 223-233.	0.4	124
115	Development and Characterization of Recombinant Antibody Fragments That Recognize and Neutralize In Vitro Stx2 Toxin from Shiga Toxin-Producing Escherichia coli. PLoS ONE, 2015, 10, e0120481.	1.1	28
116	Peptide Binding Properties of the Three PDZ Domains of Bazooka (Drosophila Par-3). PLoS ONE, 2014, 9, e86412.	1.1	2
117	Prediction and Experimental Characterization of nsSNPs Altering Human PDZ-Binding Motifs. PLoS ONE, 2014, 9, e94507.	1.1	10
118	Synthetic antibody technologies. Current Opinion in Structural Biology, 2014, 24, 1-9.	2.6	57
119	E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nature Chemical Biology, 2014, 10, 156-163.	3.9	81
120	A Structural Portrait of the PDZ Domain Family. Journal of Molecular Biology, 2014, 426, 3509-3519.	2.0	71
121	A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 2014, 6, 57.	3.6	101
122	Alteration of the C-Terminal Ligand Specificity of the Erbin PDZ Domain by Allosteric Mutational Effects. Journal of Molecular Biology, 2014, 426, 3500-3508.	2.0	17
123	Development of inhibitors in the ubiquitination cascade. FEBS Letters, 2014, 588, 356-367.	1.3	67
124	FROM NATURAL ANTIBODIES TO SYNTHETIC PROTEINS. , 2014, , .		0
125	CDR-H3 Diversity Is Not Required for Antigen Recognition by Synthetic Antibodies. Journal of Molecular Biology, 2013, 425, 803-811.	2.0	150
126	A Strategy for Modulation of Enzymes in the Ubiquitin System. Science, 2013, 339, 590-595.	6.0	257

#	Article	IF	CITATIONS
127	SH3 interactome conserves general function over specific form. Molecular Systems Biology, 2013, 9, 652.	3.2	61
128	Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains. FEBS Letters, 2012, 586, 2631-2637.	1.3	43
129	Antibodies for all: The case for genomeâ€wide affinity reagents. FEBS Letters, 2012, 586, 2778-2779.	1.3	17
130	Studying Binding Specificities of Peptide Recognition Modules by High-Throughput Phage Display Selections. Methods in Molecular Biology, 2011, 781, 87-97.	0.4	31
131	Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology, 2011, 29, 245-254.	9.4	482
132	Coevolution of PDZ domain–ligand interactions analyzed by high-throughput phage display and deep sequencing. Molecular BioSystems, 2010, 6, 1782.	2.9	107
133	Rapid Evolution of Functional Complexity in a Domain Family. Science Signaling, 2009, 2, ra50.	1.6	57
134	Bayesian Modeling of the Yeast SH3 Domain Interactome Predicts Spatiotemporal Dynamics of Endocytosis Proteins. PLoS Biology, 2009, 7, e1000218.	2.6	172
135	Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nature Chemical Biology, 2009, 5, 217-219.	3.9	143
136	The Intrinsic Contributions of Tyrosine, Serine, Glycine and Arginine to the Affinity and Specificity of Antibodies. Journal of Molecular Biology, 2008, 377, 1518-1528.	2.0	196
137	Comprehensive Analysis of the Factors Contributing to the Stability and Solubility of Autonomous Human VH Domains. Journal of Biological Chemistry, 2008, 283, 3639-3654.	1.6	157
138	A Specificity Map for the PDZ Domain Family. PLoS Biology, 2008, 6, e239.	2.6	410
139	High-throughput Generation of Synthetic Antibodies from Highly Functional Minimalist Phage-displayed Libraries. Journal of Molecular Biology, 2007, 373, 924-940.	2.0	315
140	Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nature Protocols, 2007, 2, 1368-1386.	5.5	174
141	Phage display for engineering and analyzing protein interaction interfaces. Current Opinion in Structural Biology, 2007, 17, 481-487.	2.6	132
142	Tyrosine Plays a Dominant Functional Role in the Paratope of a Synthetic Antibody Derived from a Four Amino Acid Code. Journal of Molecular Biology, 2006, 357, 100-114.	2.0	96
143	Comparative Structural Analysis of the Erbin PDZ Domain and the First PDZ Domain of ZO-1. Journal of Biological Chemistry, 2006, 281, 22312-22320.	1.6	70
144	Convergent and Divergent Ligand Specificity among PDZ Domains of the LAP and Zonula Occludens (ZO) Families. Journal of Biological Chemistry, 2006, 281, 22299-22311.	1.6	94

#	Article	IF	CITATIONS
145	PDZ Domains: Intracellular Mediators of Carboxy-Terminal Protein Recognition and Scaffolding. , 2005, , 257-278.		1
146	Molecular Recognition by a Binary Code. Journal of Molecular Biology, 2005, 348, 1153-1162.	2.0	189
147	Phage-displayed Antibody Libraries of Synthetic Heavy Chain Complementarity Determining Regions. Journal of Molecular Biology, 2004, 338, 299-310.	2.0	157
148	Comprehensive Mutational Analysis of the M13 Major Coat Protein: Improved Scaffolds for C-terminal Phage Display. Journal of Molecular Biology, 2004, 340, 587-597.	2.0	32
149	High-affinity Human Antibodies from Phage-displayed Synthetic Fab Libraries with a Single Framework Scaffold. Journal of Molecular Biology, 2004, 340, 1073-1093.	2.0	222
150	Synthetic antibodies from a four-amino-acid code: A dominant role for tyrosine in antigen recognition. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12467-12472.	3.3	276
151	Exploring Protein-Protein Interactions with Phage Display. ChemBioChem, 2003, 4, 14-25.	1.3	161
152	Functional genomics of intracellular peptide recognition domains with combinatorial biology methods. Current Opinion in Chemical Biology, 2003, 7, 97-102.	2.8	21
153	Origins of PDZ Domain Ligand Specificity. Journal of Biological Chemistry, 2003, 278, 7645-7654.	1.6	134
154	Efficient phage display of polypeptides fused to the carboxy-terminus of the M13 gene-3 minor coat protein. FEBS Letters, 2000, 480, 231-234.	1.3	57
155	[21] Phage display for selection of novel binding peptides. Methods in Enzymology, 2000, 328, 333-IN5.	0.4	359
156	Engineered SH2 Domains for Targeted Phosphoproteomics. ACS Chemical Biology, 0, , .	1.6	6