List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1318960/publications.pdf Version: 2024-02-01

ΡΛΙΙΙΟ ΔΡΤΛΧΟ

#	Article	IF	CITATIONS
1	Fire in the Earth System. Science, 2009, 324, 481-484.	12.6	2,330
2	Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science, 2004, 303, 1173-1176.	12.6	1,316
3	Smoking Rain Clouds over the Amazon. Science, 2004, 303, 1337-1342.	12.6	1,282
4	The Amazon basin in transition. Nature, 2012, 481, 321-328.	27.8	922
5	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	3.0	845
6	The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 2006, 6, 2593-2649.	4.9	690
7	Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22, .	4.9	617
8	Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmospheric Chemistry and Physics, 2006, 6, 3563-3570.	4.9	566
9	The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmospheric Environment, 2009, 43, 604-618.	4.1	563
10	Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon. Science, 2010, 329, 1513-1516.	12.6	541
11	Atmospheric Iron Deposition: Global Distribution, Variability, and Human Perturbations. Annual Review of Marine Science, 2009, 1, 245-278.	11.6	536
12	Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS. Journal of Geophysical Research, 2002, 107, LBA 14-1.	3.3	430
13	A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophysical Research Letters, 2010, 37, .	4.0	412
14	Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research, 2002, 107, LBA 59-1.	3.3	374
15	Contrasting convective regimes over the Amazon: Implications for cloud electrification. Journal of Geophysical Research, 2002, 107, LBA 50-1.	3.3	374
16	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	4.9	363
17	Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	362
18	Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment, 2000, 34, 1641-1653.	4.1	347

#	Article	IF	CITATIONS
19	Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity. Atmospheric Chemistry and Physics, 2009, 9, 7551-7575.	4.9	347
20	Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmospheric Chemistry and Physics, 2006, 6, 471-491.	4.9	342
21	Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. Journal of Geophysical Research, 2002, 107, LBA 33-1.	3.3	295
22	Substantial convection and precipitation enhancements by ultrafineaerosol particles. Science, 2018, 359, 411-418.	12.6	290
23	Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmospheric Chemistry and Physics, 2006, 6, 3443-3462.	4.9	285
24	Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment. Journal of Geophysical Research, 1998, 103, 31783-31808.	3.3	284
25	Sources and properties of Amazonian aerosol particles. Reviews of Geophysics, 2010, 48, .	23.0	283
26	Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. Journal of Geophysical Research, 1998, 103, 32041-32050.	3.3	282
27	Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nature Geoscience, 2009, 2, 402-405.	12.9	282
28	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	4.9	278
29	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	3.3	274
30	Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric Chemistry and Physics, 2006, 6, 375-402.	4.9	265
31	Combustion iron distribution and deposition. Global Biogeochemical Cycles, 2008, 22, .	4.9	263
32	Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. Journal of Geophysical Research, 2002, 107, LBA 49-1.	3.3	250
33	The Impact of Sugar Cane–Burning Emissions on the Respiratory System of Children and the Elderly. Environmental Health Perspectives, 2006, 114, 725-729.	6.0	246
34	Characterization of the Gent Stacked Filter Unit PM10Sampler. Aerosol Science and Technology, 1997, 27, 726-735.	3.1	237
35	Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophysical Research Letters, 2001, 28, 951-954.	4.0	234
36	Monitoring the transport of biomass burning emissions in South America. Environmental Fluid Mechanics, 2005, 5, 135-167.	1.6	231

#	Article	IF	CITATIONS
37	Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes. Geophysical Research Letters, 1995, 22, 3039-3042.	4.0	222
38	Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon Region. Journal of Geophysical Research, 2002, 107, LBA 39-1.	3.3	222
39	Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. Journal of Geophysical Research, 2009, 114, .	3.3	220
40	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric Chemistry and Physics, 2015, 15, 10723-10776.	4.9	218
41	Cloud condensation nucleation activity of biomass burning aerosol. Journal of Geophysical Research, 2009, 114, .	3.3	213
42	Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5). Atmospheric Chemistry and Physics, 2016, 16, 4785-4797.	4.9	213
43	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	4.9	212
44	An overview of the first decade of Polly ^{NET} : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling. Atmospheric Chemistry and Physics, 2016, 16, 5111-5137.	4.9	212
45	Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions. Faraday Discussions, 2013, 165, 203.	3.2	207
46	The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research, 2007, 112, .	3.3	206
47	Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmospheric Chemistry and Physics, 2005, 5, 781-797.	4.9	196
48	Biogenic Potassium Salt Particles as Seeds for Secondary Organic Aerosol in the Amazon. Science, 2012, 337, 1075-1078.	12.6	188
49	Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08. Atmospheric Chemistry and Physics, 2012, 12, 11997-12019.	4.9	187
50	The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmospheric Chemistry and Physics, 2007, 7, 5883-5897.	4.9	186
51	Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2015, 15, 11807-11833.	4.9	185
52	Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmospheric Chemistry and Physics, 2016, 16, 11915-11935.	4.9	185
53	Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry, 1995, 22, 19-39.	3.2	181
54	Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience, 2015, 8, 768-771.	12.9	180

#	Article	IF	CITATIONS
55	Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmospheric Environment, 2001, 35, 4937-4945.	4.1	179
56	High aerosol optical depth biomass burning events: A comparison of optical properties for different source regions. Geophysical Research Letters, 2003, 30, .	4.0	179
57	Organic compounds present in the natural Amazonian aerosol: Characterization by gas chromatography-mass spectrometry. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	177
58	Composition and sources of aerosols from the Amazon Basin. Journal of Geophysical Research, 1988, 93, 1605-1615.	3.3	175
59	The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation. Atmospheric Chemistry and Physics, 2009, 9, 2843-2861.	4.9	173
60	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	3.2	172
61	Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin. Geophysical Research Letters, 2009, 36, .	4.0	171
62	An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.	4.9	170
63	Atmospheric budget of primary biological aerosol particles from fungal spores. Geophysical Research Letters, 2009, 36, .	4.0	169
64	Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment, 2001, 35, 4889-4902.	4.1	168
65	Sensitivity of CCN spectra on chemical and physical properties of aerosol: A case study from the Amazon Basin. Journal of Geophysical Research, 2002, 107, LBA 37-1.	3.3	167
66	Aerosol characteristics and sources for the Amazon Basin during the wet season. Journal of Geophysical Research, 1990, 95, 16971-16985.	3.3	164
67	Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia. Atmospheric Environment, 2000, 34, 4063-4072.	4.1	164
68	Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. Journal of Geophysical Research, 2003, 108, .	3.3	162
69	Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition - comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics, 2004, 4, 2119-2143.	4.9	160
70	Biogeography in the air: fungal diversity over land and oceans. Biogeosciences, 2012, 9, 1125-1136.	3.3	152
71	Cloud condensation nuclei in the Amazon Basin: "marine―conditions over a continent?. Geophysical Research Letters, 2001, 28, 2807-2810.	4.0	148
72	Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest. Geophysical Research Letters, 2009, 36, .	4.0	146

#	Article	IF	CITATIONS
73	Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	142
74	Rapid formation of isoprene photo-oxidation products observed in Amazonia. Atmospheric Chemistry and Physics, 2009, 9, 7753-7767.	4.9	136
75	The long-range transport of southern African aerosols to the tropical South Atlantic. Journal of Geophysical Research, 1996, 101, 23777-23791.	3.3	135
76	Large-scale aerosol source apportionment in Amazonia. Journal of Geophysical Research, 1998, 103, 31837-31847.	3.3	135
77	Composition and diurnal variability of the natural Amazonian aerosol. Journal of Geophysical Research, 2003, 108, .	3.3	132
78	Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin. Journal of Geophysical Research, 1994, 99, 22857.	3.3	131
79	Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) - Cooperative LBA Regional Experiment (CLAIRE) in March 1998. Journal of Geophysical Research, 2001, 106, 14919-14934.	3.3	131
80	Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature Communications, 2019, 10, 1046.	12.8	131
81	Aerosol chemistry during the wet season in central Amazonia: The influence of longâ€range transport. Journal of Geophysical Research, 1990, 95, 16955-16969.	3.3	129
82	Overview of the inorganic and organic composition of size-segregated aerosol in Rondônia, Brazil, from the biomass-burning period to the onset of the wet season. Journal of Geophysical Research, 2007, 112, .	3.3	128
83	The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the American Meteorological Society, 2017, 98, 981-997.	3.3	128
84	Transport of North African dust from the Bodélé depression to the Amazon Basin: a case study. Atmospheric Chemistry and Physics, 2010, 10, 7533-7544.	4.9	124
85	ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO. Bulletin of the American Meteorological Society, 2016, 97, 1885-1908.	3.3	124
86	Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations. Atmospheric Chemistry and Physics, 2016, 16, 12733-12752.	4.9	123
87	New Analytical Method for the Determination of Levoglucosan, Polyhydroxy Compounds, and 2-Methylerythritol and Its Application to Smoke and Rainwater Samples. Environmental Science & Technology, 2005, 39, 2744-2752.	10.0	122
88	The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 338-349.	1.6	119
89	Size distribution of biogenic aerosol particles from the amazon basin. Atmospheric Environment, 1995, 29, 393-402.	4.1	118
90	Importance of the organic aerosol fraction for modeling aerosol hygroscopic growth and activation: a case study in the Amazon Basin. Atmospheric Chemistry and Physics, 2005, 5, 3111-3126.	4.9	118

#	Article	IF	CITATIONS
91	Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophysical Research Letters, 2007, 34, .	4.0	115
92	Submicrometer aerosol particle size distribution and hygroscopic growth measured in the Amazon rain forest during the wet season. Journal of Geophysical Research, 2002, 107, LBA 22-1.	3.3	113
93	Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 2016, 539, 416-419.	27.8	112
94	Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds. Atmospheric Chemistry and Physics, 2008, 8, 1661-1675.	4.9	110
95	Aerosol composition and source apportionment in Santiago de Chile. Nuclear Instruments & Methods in Physics Research B, 1999, 150, 409-416.	1.4	109
96	Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories. Atmospheric Chemistry and Physics, 2018, 18, 2853-2881.	4.9	108
97	Withinâ€plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Global Change Biology, 2012, 18, 973-984.	9.5	107
98	Properties of aerosols from sugar-cane burning emissions in Southeastern Brazil. Atmospheric Environment, 2005, 39, 4627-4637.	4.1	106
99	Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction. Atmospheric Chemistry and Physics, 2016, 16, 15709-15740.	4.9	105
100	Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin. Atmospheric Chemistry and Physics, 2018, 18, 921-961.	4.9	105
101	Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B. Journal of Geophysical Research, 1990, 95, 17001-17014.	3.3	104
102	Dry and wet deposition of inorganic nitrogen compounds to a tropical pasture site (Rondônia, Brazil). Atmospheric Chemistry and Physics, 2006, 6, 447-469.	4.9	104
103	Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations. Atmospheric Chemistry and Physics, 2016, 16, 11083-11106.	4.9	104
104	Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate. Geophysical Research Letters, 2004, 31, .	4.0	103
105	Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load. Atmospheric Chemistry and Physics, 2010, 10, 9251-9282.	4.9	103
106	Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment. Atmospheric Chemistry and Physics, 2014, 14, 12069-12083.	4.9	103
107	Sphericity and morphology of smoke particles from biomass burning in Brazil. Journal of Geophysical Research, 1998, 103, 32051-32057.	3.3	101
108	Large scale mercury and trace element measurements in the Amazon basin. Atmospheric Environment, 2000, 34, 4085-4096.	4.1	99

#	Article	IF	CITATIONS
109	Stable carbon and nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil. Atmospheric Environment, 2002, 36, 2427-2432.	4.1	99
110	Fog―and cloudâ€induced aerosol modification observed by the Aerosol Robotic Network (AERONET). Journal of Geophysical Research, 2012, 117, .	3.3	99
111	Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest. Nature Geoscience, 2016, 9, 34-37.	12.9	99
112	Concentrations and species composition of atmospheric volatile organic compounds (VOCs) as observed during the wet and dry season in Rondônia (Amazonia). Journal of Geophysical Research, 2002, 107, LBA 20-1.	3.3	98
113	Impact on human health of particulate matter emitted from burnings in the Brazilian Amazon region. Revista De Saude Publica, 2010, 44, 121-130.	1.7	97
114	Globally significant changes in biological processes of the Amazon Basin: results of the Large-scale Biosphere-Atmosphere Experiment. Global Change Biology, 2004, 10, 519-529.	9.5	96
115	Aerosol profiling with lidar in the Amazon Basin during the wet and dry season. Journal of Geophysical Research, 2012, 117, .	3.3	95
116	Long-term monitoring of atmospheric aerosols in the Amazon Basin: Source identification and apportionment. Journal of Geophysical Research, 1998, 103, 31849-31864.	3.3	94
117	The NH4+-NO3â^'-Clâ^'-SO42â^'-H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?. Journal of Geophysical Research, 2005, 110, .	3.3	94
118	Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia. Atmospheric Chemistry and Physics, 2005, 5, 2989-3002.	4.9	93
119	Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5828-5834.	7.1	91
120	Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions. Atmospheric Chemistry and Physics, 2010, 10, 9319-9331.	4.9	90
121	The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon. Atmospheric Chemistry and Physics, 2014, 14, 6523-6543.	4.9	90
122	Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08). Atmospheric Chemistry and Physics, 2015, 15, 3687-3701.	4.9	88
123	Long term measurements of aerosol optical properties at a primary forest site in Amazonia. Atmospheric Chemistry and Physics, 2013, 13, 2391-2413.	4.9	87
124	Fires increase Amazon forest productivity through increases in diffuse radiation. Geophysical Research Letters, 2015, 42, 4654-4662.	4.0	87
125	Impact on short-lived climate forcers increases projected warming due to deforestation. Nature Communications, 2018, 9, 157.	12.8	86
126	Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999. Journal of Aerosol Science, 2003, 34, 883-907.	3.8	85

#	Article	IF	CITATIONS
127	Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmospheric Chemistry and Physics, 2013, 13, 1261-1275.	4.9	85
128	Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6125-6130.	7.1	85
129	Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment, 2015, 120, 277-285.	4.1	84
130	Diel and seasonal changes of biogenic volatile organic compounds within and above an Amazonian rainforest. Atmospheric Chemistry and Physics, 2015, 15, 3359-3378.	4.9	83
131	Amazonia and the modern carbon cycle: lessons learned. Oecologia, 2005, 143, 483-500.	2.0	82
132	Optical and physical properties of aerosols in the boundary layer and free troposphere over the Amazon Basin during the biomass burning season. Atmospheric Chemistry and Physics, 2006, 6, 2911-2925.	4.9	81
133	The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories. Atmospheric Chemistry and Physics, 2010, 10, 5785-5795.	4.9	81
134	Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons. Atmospheric Chemistry and Physics, 2012, 12, 6041-6065.	4.9	81
135	Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmospheric Chemistry and Physics, 2013, 13, 12199-12213.	4.9	81
136	Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds. Atmospheric Environment, 2000, 34, 5037-5051.	4.1	80
137	Cloudâ€nucleating properties of the Amazonian biomass burning aerosol: Cloud condensation nuclei measurements and modeling. Journal of Geophysical Research, 2007, 112, .	3.3	80
138	Characterization of the optical properties of atmospheric aerosols in Amazônia from longâ€ŧerm AERONET monitoring (1993–1995 and 1999–2006). Journal of Geophysical Research, 2008, 113, .	3.3	80
139	Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season. Atmospheric Chemistry and Physics, 2003, 3, 1523-1539.	4.9	79
140	Spectral dependence of aerosol light absorption over the Amazon Basin. Atmospheric Chemistry and Physics, 2011, 11, 8899-8912.	4.9	76
141	Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 5271-5295.	4.9	76
142	Within-canopy sesquiterpene ozonolysis in Amazonia. Journal of Geophysical Research, 2011, 116, .	3.3	73
143	Biomass burning particles in the Brazilian Amazon region: Mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environmental Pollution, 2018, 233, 960-970.	7.5	72
144	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. Atmospheric Measurement Techniques, 2015, 8, 505-521.	3.1	71

#	Article	IF	CITATIONS
145	CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry and Physics, 2017, 17, 11779-11801.	4.9	71
146	Physical properties and concentration of aerosol particles over the Amazon tropical forest during background and biomass burning conditions. Atmospheric Chemistry and Physics, 2003, 3, 951-967.	4.9	69
147	Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan. Ambio, 2012, 41, 350-369.	5.5	69
148	Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation. Environmental Science & Technology, 2016, 50, 9952-9962.	10.0	69
149	Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: A panel study. Environmental Research, 2012, 117, 27-35.	7.5	68
150	Further evidence for significant smoke transport from Africa to Amazonia. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	67
151	Fire and deforestation dynamics in Amazonia (1973–2014). Global Biogeochemical Cycles, 2017, 31, 24-38.	4.9	66
152	Global Organic Emissions from Vegetation. Advances in Global Change Research, 2004, , 115-170.	1.6	65
153	Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols. Atmospheric Chemistry and Physics, 2018, 18, 10289-10331.	4.9	64
154	Vertical profiles of CO ₂ above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 581.	1.6	63
155	Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest. Biogeosciences, 2015, 12, 6337-6349.	3.3	63
156	A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises. Atmospheric Environment, 2015, 123, 240-250.	4.1	63
157	Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.	4.9	63
158	Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR-B. Journal of Geophysical Research, 1998, 103, 31893-31902.	3.3	62
159	Observed reductions of total solar irradiance by biomass-burning aerosols in the Brazilian Amazon and Zambian Savanna. Geophysical Research Letters, 2002, 29, 4-1-4-4.	4.0	62
160	Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia. Journal of Geophysical Research, 2009, 114, .	3.3	62
161	Air pollution and hospital admissions for respiratory diseases in the subequatorial Amazon: a time series approach. Cadernos De Saude Publica, 2010, 26, 747-761.	1.0	62
162	Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Scientific Reports, 2017, 7, 10937.	3.3	62

#	Article	IF	CITATIONS
163	QuÃmica atmosférica na Amazônia: a floresta e as emissões de queimadas controlando a composição da atmosfera amazônica. Acta Amazonica, 2005, 35, 185-196.	0.7	61
164	Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study. Atmospheric Chemistry and Physics, 2015, 15, 2791-2804.	4.9	60
165	Developing countries must lead on solar geoengineering research. Nature, 2018, 556, 22-24.	27.8	60
166	Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model. Atmospheric Chemistry and Physics, 2019, 19, 9125-9152.	4.9	60
167	Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia. Atmospheric Chemistry and Physics, 2011, 11, 11415-11429.	4.9	59
168	Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: relative importance of aerosol–cloud and aerosol–radiation interactions. Atmospheric Chemistry and Physics, 2020, 20, 13283-13301.	4.9	59
169	Characteristics of fine and coarse particles of natural and urban aerosols of Brazil. Atmospheric Environment, 1986, 20, 2259-2269.	1.0	58
170	Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature. Atmospheric Chemistry and Physics, 2011, 11, 9485-9501.	4.9	58
171	Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, 2015, 29, 19-32.	4.9	58
172	Impact of biomass burning aerosols on precipitation in the Amazon: A modeling case study. Journal of Geophysical Research, 2009, 114, .	3.3	57
173	Acute Effects of Particulate Matter and Black Carbon from Seasonal Fires on Peak Expiratory Flow of Schoolchildren in the Brazilian Amazon. PLoS ONE, 2014, 9, e104177.	2.5	57
174	Atmospheric mercury and trace elements in the region of Alta Floresta in the Amazon Basin. Water, Air, and Soil Pollution, 1995, 80, 273-283.	2.4	56
175	Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia. Atmospheric Environment, 2010, 44, 503-511.	4.1	56
176	Risk assessment of PM2.5 to child residents in Brazilian Amazon region with biofuel production. Environmental Health, 2012, 11, 64.	4.0	56
177	A possible role of ground-based microorganisms on cloud formation in the atmosphere. Biogeosciences, 2010, 7, 387-394.	3.3	55
178	On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil. Atmospheric Chemistry and Physics, 2012, 12, 11733-11751.	4.9	55
179	Strong sesquiterpene emissions from Amazonian soils. Nature Communications, 2018, 9, 2226.	12.8	55
180	Air Quality in Selected Megacities. Journal of the Air and Waste Management Association, 2004, 54, 1-73.	1.9	54

#	Article	lF	CITATIONS
181	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. Atmospheric Chemistry and Physics, 2018, 18, 12817-12843.	4.9	54
182	Working together for Amazonia. Science, 2019, 363, 323-323.	12.6	54
183	Sources of optically active aerosol particles over the Amazon forest. Atmospheric Environment, 2004, 38, 1039-1051.	4.1	53
184	Methane airborne measurements and comparison to global models during BARCA. Journal of Geophysical Research, 2012, 117, .	3.3	53
185	Airborne observations reveal elevational gradient in tropical forest isoprene emissions. Nature Communications, 2017, 8, 15541.	12.8	53
186	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	53
187	In-canopy gradients, composition, sources, and optical properties of aerosol over the Amazon forest. Journal of Geophysical Research, 2003, 108, .	3.3	52
188	Diel and seasonal variations in the chemical composition of biomass burning aerosol. Atmospheric Chemistry and Physics, 2006, 6, 3505-3515.	4.9	52
189	Seasonality of isoprenoid emissions from a primary rainforest inÂcentral Amazonia. Atmospheric Chemistry and Physics, 2016, 16, 3903-3925.	4.9	52
190	Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest. Atmospheric Chemistry and Physics, 2017, 17, 1759-1773.	4.9	52
191	Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes. Atmospheric Chemistry and Physics, 2018, 18, 10055-10088.	4.9	52
192	Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction. Atmospheric Chemistry and Physics, 2014, 14, 7559-7572.	4.9	51
193	Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmospheric Chemistry and Physics, 2017, 17, 2673-2687.	4.9	51
194	Trace elements and individual particle analysis of atmospheric aerosols from the Antarctic peninsula. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 318-334.	1.6	50
195	The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region. Environmental Research Letters, 2009, 4, 015002.	5.2	50
196	Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in São Paulo, Brazil. Environmental Science & Technology, 2015, 49, 11381-11387.	10.0	48
197	Aerosols in Santiago de Chile: A study using receptor modeling with X-ray fluorescence and single particle analysis. Atmospheric Environment Part B Urban Atmosphere, 1990, 24, 227-241.	0.5	47
198	Airborne measurements of aerosols from burning biomass in Brazil related to the TRACE A experiment. Journal of Geophysical Research, 1996, 101, 23983-23992.	3.3	47

#	Article	IF	CITATIONS
199	Pyrogeography, historical ecology, and the human dimensions of fire regimes. Journal of Biogeography, 2014, 41, 833-836.	3.0	47
200	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmospheric Chemistry and Physics, 2014, 14, 11393-11407.	4.9	46
201	Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia. Environmental Science & Technology, 2016, 50, 12179-12186.	10.0	46
202	A convective kinematic trajectory technique for low-resolution atmospheric models. Journal of Geophysical Research, 2000, 105, 24375-24386.	3.3	45
203	Sources of carbonaceous aerosol in the Amazon basin. Atmospheric Chemistry and Physics, 2011, 11, 2747-2764.	4.9	45
204	Micronucleus frequency in children exposed to biomass burning in the Brazilian Legal Amazon region: a control case study. BMC Oral Health, 2012, 12, 6.	2.3	45
205	Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.	4.9	45
206	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	10.0	45
207	PIXE and receptor models applied to remote aerosol source apportionment in Brazil. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 259-263.	1.4	44
208	Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicology and Environmental Safety, 2011, 74, 1427-1433.	6.0	44
209	Deforestation size influences rainfall. Nature Climate Change, 2017, 7, 175-176.	18.8	44
210	Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmospheric Measurement Techniques, 2017, 10, 2837-2850.	3.1	44
211	Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environment International, 2020, 145, 106150.	10.0	44
212	Correlation between smoke and tropospheric ozone concentration in Cuiabá during Smoke, Clouds, and Radiation-Brazil (SCAR-B). Journal of Geophysical Research, 1999, 104, 12113-12129.	3.3	42
213	Genetic damage of organic matter in the Brazilian Amazon: A comparative study between intense and moderate biomass burning. Environmental Research, 2014, 130, 51-58.	7.5	42
214	Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season. Atmospheric Chemistry and Physics, 2016, 16, 14775-14794.	4.9	42
215	Two-year study of atmospheric aerosols in Alta Floresta, Brazil: Multielemental composition and source apportionment. Nuclear Instruments & Methods in Physics Research B, 2002, 189, 243-248.	1.4	41
216	Organic Constituents on the Surfaces of Aerosol Particles from Southern Finland, Amazonia, and California Studied by Vibrational Sum Frequency Generation. Journal of Physical Chemistry A, 2012, 116, 8271-8290.	2.5	41

#	Article	lF	CITATIONS
217	Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest. Plants, 2015, 4, 678-690.	3.5	41
218	Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign. Atmospheric Chemistry and Physics, 2016, 16, 14657-14685.	4.9	41
219	Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory. Atmospheric Chemistry and Physics, 2019, 19, 8425-8470.	4.9	41
220	Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model. Atmospheric Chemistry and Physics, 2019, 19, 1301-1326.	4.9	41
221	An airborne regional carbon balance for Central Amazonia. Biogeosciences, 2007, 4, 759-768.	3.3	40
222	Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke. Atmospheric Chemistry and Physics, 2020, 20, 4757-4785.	4.9	40
223	Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region. Atmospheric Chemistry and Physics, 2018, 18, 14979-15001.	4.9	39
224	Trace elements and individual particle analysis of atmospheric aerosols from the Antarctic peninsula. Tellus, Series B: Chemical and Physical Meteorology, 1992, 44, 318-334.	1.6	38
225	The significance of land-atmosphere interactions in the Earth system—iLEAPS achievements and perspectives. Anthropocene, 2015, 12, 69-84.	3.3	38
226	Amazonian biogenic volatile organic compounds under global change. Global Change Biology, 2020, 26, 4722-4751.	9.5	38
227	Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols. Journal of Geophysical Research, 2002, 107, LBA 41-1.	3.3	37
228	Spectral absorption properties of aerosol particles from 350–2500nm. Geophysical Research Letters, 2009, 36, .	4.0	37
229	Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution. Atmospheric Chemistry and Physics, 2012, 12, 4987-5015.	4.9	37
230	Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol. Atmospheric Chemistry and Physics, 2015, 15, 12989-13001.	4.9	37
231	Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season. Atmospheric Chemistry and Physics, 2016, 16, 9727-9743.	4.9	37
232	Atmospheric mixing ratios of methyl ethyl ketone (2-butanone) in tropical, boreal, temperate and marine environments. Atmospheric Chemistry and Physics, 2016, 16, 10965-10984.	4.9	37
233	Sensitivities of Amazonian clouds to aerosols and updraft speed. Atmospheric Chemistry and Physics, 2017, 17, 10037-10050.	4.9	37
234	Filtration efficiency of a large set of COVID-19 face masks commonly used in Brazil. Aerosol Science and Technology, 2021, 55, 1028-1041.	3.1	37

#	Article	IF	CITATIONS
235	Aerosol number fluxes over the Amazon rain forest during the wet season. Atmospheric Chemistry and Physics, 2009, 9, 9381-9400.	4.9	36
236	Ecosystem-scale compensation points of formic and acetic acid in the central Amazon. Biogeosciences, 2011, 8, 3709-3720.	3.3	36
237	Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and light-absorbing properties of particulate matter in central Amazonia during the dry season. Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.	4.9	36
238	Chemical Oxidative Potential and Cellular Oxidative Stress from Open Biomass Burning Aerosol. Environmental Science and Technology Letters, 2019, 6, 126-132.	8.7	36
239	Sulfur gases and aerosols in and above the equatorial African rain forest. Journal of Geophysical Research, 1992, 97, 6207-6217.	3.3	35
240	Water-Soluble Ions and Trace Metals in Airborne Particles Over Urban Areas of the State of Sã0 Paulo, Brazil: Influences of Local Sources and Long Range Transport. Water, Air, and Soil Pollution, 2007, 186, 63-73.	2.4	35
241	Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Scientific Reports, 2019, 9, 16975.	3.3	35
242	Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Chemistry and Physics, 2018, 18, 6461-6482.	4.9	34
243	Long-term measurements (2010–2014) of carbonaceous aerosol and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia. Atmospheric Chemistry and Physics, 2017, 17, 14365-14392.	4.9	33
244	Characterisation of Amazon Basin aerosols at the individual particle level by X-ray microanalytical techniques. Atmospheric Environment, 2007, 41, 9217-9230.	4.1	32
245	Water-soluble organic and nitrogen levels in cloud and rainwater in a background marine environment under influence of different air masses. Journal of Atmospheric Chemistry, 2008, 61, 85-99.	3.2	32
246	Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment. Atmospheric Chemistry and Physics, 2017, 17, 1881-1899.	4.9	32
247	Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5. Atmospheric Chemistry and Physics, 2018, 18, 10773-10797.	4.9	32
248	Deriving Global Quantitative Estimates for Spatial and Temporal Distributions of Biomass Burning Emissions. Advances in Global Change Research, 2004, , 71-113.	1.6	32
249	Modeled spectral optical properties for smoke aerosols in Amazonia. Geophysical Research Letters, 2003, 30, .	4.0	31
250	Aerossois de queimadas e doencas respiratorias em criancas, Manaus, Brasil. Revista De Saude Publica, 2013, 47, 239-247.	1.7	31
251	Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons. Atmospheric Chemistry and Physics, 2015, 15, 757-782.	4.9	31
252	Reduced ultrafine particle levels in São Paulo's atmosphere during shifts from gasoline to ethanol use. Nature Communications, 2017, 8, 77.	12.8	31

#	Article	IF	CITATIONS
253	Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements. Atmospheric Chemistry and Physics, 2017, 17, 3619-3636.	4.9	31
254	Fungal spores as a source of sodium salt particles in the Amazon basin. Nature Communications, 2018, 9, 4793.	12.8	31
255	Large air quality and human health impacts due to Amazon forest and vegetation fires. Environmental Research Communications, 2020, 2, 095001.	2.3	31
256	Preliminary data on atmospheric aerosol of the Amazon Basin. Atmospheric Environment, 1982, 16, 2177-2181.	1.0	30
257	Trace elements in South America aerosol during 20th century inferred from a Nevado Illimani ice core, Eastern Bolivian Andes (6350 m asl). Atmospheric Chemistry and Physics, 2003, 3, 1337-1352.	4.9	30
258	Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy. Atmospheric Chemistry and Physics, 2011, 11, 10317-10329.	4.9	30
259	Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign. Atmospheric Chemistry and Physics, 2017, 17, 7365-7386.	4.9	30
260	Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15. Atmosphere, 2017, 8, 173.	2.3	30
261	A detailed characterization of the Saharan dust collected during the Fennec campaign inÂ2011: in situ ground-based and laboratory measurements. Atmospheric Chemistry and Physics, 2018, 18, 1023-1043.	4.9	30
262	Urban influence on the concentration and composition of submicron particulate matter in central Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 12185-12206.	4.9	30
263	Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the NOâ€NO ₂ â€O ₃ photostationary state and peroxy radical levels. Journal of Geophysical Research, 2012, 117, .	3.3	29
264	Impacts of the Manaus pollution plume on the microphysical properties of Amazonian warm-phase clouds in the wet season. Atmospheric Chemistry and Physics, 2016, 16, 7029-7041.	4.9	29
265	Distinguishing fuel and lubricating oil combustion products in diesel engine exhaust particles. Aerosol Science and Technology, 2019, 53, 594-607.	3.1	29
266	MODIS Aerosol Optical Depth Retrievals with high spatial resolution over an Urban Area using the Critical Reflectance. Journal of Geophysical Research, 2008, 113, .	3.3	28
267	On the vertical distribution of smoke in the Amazonian atmosphere during the dry season. Atmospheric Chemistry and Physics, 2016, 16, 2155-2174.	4.9	28
268	Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia. Science Advances, 2018, 4, eaar2547.	10.3	28
269	Smoke pollution's impacts in Amazonia. Science, 2020, 369, 634-635.	12.6	28
270	Biomass burning in Amazonia: Emissions, long-range transport of smoke and its regional and remote impacts. Geophysical Monograph Series, 2009, , 207-232.	0.1	27

#	Article	IF	CITATIONS
271	Chemically Resolved Particle Fluxes Over Tropical and Temperate Forests. Aerosol Science and Technology, 2013, 47, 818-830.	3.1	27
272	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	1.6	27
273	Laser Microprobe Mass Analysis of Individual Antarctic Aerosol Particles. International Journal of Environmental Analytical Chemistry, 1990, 38, 427-438.	3.3	26
274	Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 10255-10274.	4.9	26
275	Ground-based observation of clusters and nucleation-mode particles in the Amazon. Atmospheric Chemistry and Physics, 2018, 18, 13245-13264.	4.9	26
276	Transformation and ageing of biomass burning carbonaceous aerosol over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2020, 20, 5309-5326.	4.9	26
277	Aerosol source apportionment around a large coal fired power plant—Thermoelectric Complex Jorge Lacerda, Santa Catarina, Brazil. Atmospheric Environment, 2005, 39, 5307-5324.	4.1	25
278	Evaluation of the carbon content of aerosols from the burning of biomass in the Brazilian Amazon using thermal, optical and thermal-optical analysis methods. Atmospheric Chemistry and Physics, 2011, 11, 4425-4444.	4.9	25
279	Evolução do Plano de Ação para Prevenção e Controle do Desmatamento na Amazônia Legal. Revista Do Instituto De Estudos Brasileiros, 2017, , 108.	0.3	25
280	Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy. Atmospheric Chemistry and Physics, 2020, 20, 11923-11939.	4.9	25
281	Study of tropical organic aerosol by thermally assisted alkylation-gas chromatography mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 351-369.	5.5	24
282	Emission and dry deposition of accumulation mode particles in the Amazon Basin. Atmospheric Chemistry and Physics, 2010, 10, 10237-10253.	4.9	24
283	A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest. Atmospheric Chemistry and Physics, 2010, 10, 3063-3079.	4.9	24
284	Uma nova era geológica em nosso planeta: o Antropoceno?. Revista USP, 2014, , 13.	0.1	24
285	Efflorescence upon humidification? Xâ€ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration. Geophysical Research Letters, 2014, 41, 3681-3689.	4.0	24
286	Mudanças climáticas e ambientais e as doenças infecciosas: cenários e incertezas para o Brasil. Epidemiologia E Servicos De Saude: Revista Do Sistema Unico De Saude Do Brasil, 2009, 18, .	1.0	24
287	Long-term deposition and condensation ice-nucleating particle measurements from four stations across the globe. Atmospheric Chemistry and Physics, 2020, 20, 15983-16006.	4.9	24
288	Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin. Nuclear Instruments & Methods in Physics Research B, 1993, 75, 277-281.	1.4	23

#	Article	IF	CITATIONS
289	Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles. Nuclear Instruments & Methods in Physics Research B, 1993, 75, 521-525.	1.4	23
290	A permanent Raman lidar station in the Amazon: description, characterization, and first results. Atmospheric Measurement Techniques, 2014, 7, 1745-1762.	3.1	23
291	Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Scientific Reports, 2018, 8, 10679.	3.3	23
292	Natural and Anthropogenically Influenced Isoprene Oxidation in Southeastern United States and Central Amazon. Environmental Science & Technology, 2020, 54, 5980-5991.	10.0	22
293	Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons. Atmospheric Chemistry and Physics, 2018, 18, 10433-10457.	4.9	22
294	Source identification and global implications of black carbon. Geoscience Frontiers, 2022, 13, 101149.	8.4	21
295	Particulate matter characteristics, dynamics, and sources in an underground mine. Aerosol Science and Technology, 2018, 52, 114-122.	3.1	21
296	Trace element concentrations and size distribution of biogenic aerosols from the amazon basin during the wet season. Nuclear Instruments & Methods in Physics Research B, 1990, 49, 366-371.	1.4	20
297	Trace elements and receptor modelling of aerosols in the antarctic peninsula. Nuclear Instruments & Methods in Physics Research B, 1990, 49, 383-387.	1.4	20
298	PIXE, PIGE and ion chromatography of aerosol particles from northeast Amazon Basin. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 955-960.	1.4	20
299	Tropospheric aerosol observations in São Paulo, Brazil using a compact lidar system. International Journal of Remote Sensing, 2005, 26, 2797-2816.	2.9	20
300	Understanding the climate of Amazonia: Progress from LBA. Geophysical Monograph Series, 2009, , 145-147.	0.1	20
301	Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash. Atmospheric Chemistry and Physics, 2014, 14, 10649-10661.	4.9	20
302	Seasonal variability of heterogeneous ice formation in stratiform clouds over the Amazon Basin. Geophysical Research Letters, 2015, 42, 5587-5593.	4.0	19
303	Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012. Atmospheric Chemistry and Physics, 2018, 18, 5619-5638.	4.9	19
304	The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmospheric Chemistry and Physics, 2019, 19, 5771-5790.	4.9	19
305	Acute effects of inhalable particles on the frog palate mucociliary epithelium Environmental Health Perspectives, 1999, 107, 829-833.	6.0	19
306	Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the Amazon rainforest. Science Advances, 2022, 8, eabj0329.	10.3	19

#	Article	IF	CITATIONS
307	Effects of heavy industrial pollution on respiratory function in the children of Cubatao, Brazil: a preliminary report Environmental Health Perspectives, 1991, 94, 51-54.	6.0	18
308	Determinação dos hidrocarbonetos saturados e policÃclicos aromáticos presentes no material particulado da atmosfera amazônica. Quimica Nova, 1998, 21, 385.	0.3	18
309	Chemical Characterization of Aerosols on the East Coast of the United States Using Aircraft and Ground-Based Stations during the CLAMS Experiment. Journals of the Atmospheric Sciences, 2005, 62, 934-946.	1.7	18
310	Aerosol particles in Amazonia: Their composition, role in the radiation balance, cloud formation, and nutrient cycles. Geophysical Monograph Series, 2009, , 233-250.	0.1	18
311	On molecular chirality within naturally occurring secondary organic aerosol particles from the central Amazon Basin. Physical Chemistry Chemical Physics, 2011, 13, 12114.	2.8	18
312	Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	18
313	Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil. Atmospheric Environment, 2016, 144, 226-233.	4.1	17
314	Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5. Atmospheric Environment, 2018, 191, 513-524.	4.1	17
315	A case study of the direct radiative effect of biomass burning aerosols on precipitation in the Eastern Amazon. Atmospheric Research, 2009, 94, 409-421.	4.1	16
316	African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest. Atmospheric Chemistry and Physics, 2018, 18, 10391-10405.	4.9	16
317	Substantial Increases in Eastern Amazon and Cerrado Biomass Burningâ€Sourced Tropospheric Ozone. Geophysical Research Letters, 2020, 47, e2019GL084143.	4.0	16
318	Atmospheric Mercury and Trace Elements in the Region of Alta Floresta in the Amazon Basin. , 1995, , 273-283.		16
319	Occurrence and growth of sub-50 nm aerosol particles in the Amazonian boundary layer. Atmospheric Chemistry and Physics, 2022, 22, 3469-3492.	4.9	16
320	Small farmers and deforestation in Amazonia. Geophysical Monograph Series, 2009, , 117-143.	0.1	15
321	Optical and Chemical Characterization of Aerosols Emitted from Coal, Heavy and Light Fuel Oil, and Small-Scale Wood Combustion. Environmental Science & Technology, 2014, 48, 827-836.	10.0	15
322	Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geoscience Frontiers, 2022, 13, 101168.	8.4	15
323	As três emergências que nossa sociedade enfrenta: saúde, biodiversidade e mudanças climáticas. Estudos Avancados, 2020, 34, 53-66.	0.5	15
324	The São Paulo PIXE system and its use on a national monitoring air quality program. Nuclear Instruments & Methods in Physics Research B, 1984, 3, 462-465.	1.4	14

#	Article	IF	CITATIONS
325	PIXE analysis for air pollution source apportionment in urban areas of Brazil. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 315-318.	1.4	14
326	Emissions of Atmospheric Trace Compounds. Advances in Global Change Research, 2004, , .	1.6	14
327	Characterisation of concentrates of heavy mineral sands by micro-Raman spectrometry and CC-SEM/EDX with HCA. Applied Geochemistry, 2007, 22, 2078-2085.	3.0	14
328	Aerosol measurement methods to quantify spore emissions from fungi and cryptogamic covers in the Amazon. Atmospheric Measurement Techniques, 2020, 13, 153-164.	3.1	14
329	Perspectivas de pesquisas na relação entre clima e o funcionamento da floresta Amazônica. Ciência E Cultura, 2014, 66, 41-46.	0.0	14
330	Trace elements in lake sediments measured by the PIXE technique. Nuclear Instruments & Methods in Physics Research B, 1999, 150, 298-305.	1.4	13
331	Droplet Size Distributions as a function of rainy system type and Cloud Condensation Nuclei concentrations. Atmospheric Research, 2014, 143, 301-312.	4.1	13
332	A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5471-5483.	4.9	13
333	Aerosols from anthropogenic and biogenic sources and their interactions – modeling aerosol formation, optical properties, and impacts over the central Amazon basin. Atmospheric Chemistry and Physics, 2021, 21, 6755-6779.	4.9	13
334	Particulate matter geochemistry of a highly industrialized region in the Caribbean: Basis for future toxicological studies. Geoscience Frontiers, 2022, 13, 101115.	8.4	13
335	Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis. Atmospheric Chemistry and Physics, 2021, 21, 16453-16477.	4.9	13
336	Laser microprobe mass analysis of Amazon Basin aerosols. Atmospheric Environment Part A General Topics, 1993, 27, 661-668.	1.3	12
337	Optimized energy dispersive X-ray fluorescence analysis of atmospheric aerosols collected at pristine and perturbed Amazon Basin sites. X-Ray Spectrometry, 2014, 43, 228-237.	1.4	12
338	Primary and secondary organics in the tropical Amazonian rainforest aerosols: chiral analysis of 2-methyltetraols. Environmental Sciences: Processes and Impacts, 2014, 16, 1413.	3.5	12
339	Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric Measurement Techniques, 2020, 13, 661-684.	3.1	12
340	Improvements to the representation of BVOC chemistry–climate interactions in UKCA (v11.5) with the CRI-StratÂ2 mechanism: incorporation and evaluation. Geoscientific Model Development, 2021, 14, 5239-5268.	3.6	12
341	Bioaerosols in the Amazon rain forest: temporal variations and vertical profiles of Eukarya, Bacteria, and Archaea. Biogeosciences, 2021, 18, 4873-4887.	3.3	12
342	Effects of Heavy Industrial Pollution on Respiratory Function in the Children of Cubatao, Brazil: A Preliminary Report. Environmental Health Perspectives, 1991, 94, 51.	6.0	11

#	Article	IF	CITATIONS
343	Monitoring of atmospheric aerosol particles on the Antarctic Peninsula. Annals of Glaciology, 1998, 27, 560-564.	1.4	11
344	Elemental analysis of agricultural soil samples by particle induced X-ray emission (PIXE) technique. Nuclear Instruments & Methods in Physics Research B, 1999, 150, 478-483.	1.4	11
345	Genotoxic potential generated by biomass burning in the Brazilian Legal Amazon by Tradescantia micronucleus bioassay: a toxicity assessment study. Environmental Health, 2011, 10, 41.	4.0	11
346	Break down boundaries in climate research. Nature, 2012, 481, 239-239.	27.8	11
347	Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season. Atmospheric Chemistry and Physics, 2019, 19, 13053-13066.	4.9	11
348	Impacts of Hydroperoxymethyl Thioformate on the Global Marine Sulfur Budget. ACS Earth and Space Chemistry, 2021, 5, 2577-2586.	2.7	11
349	Aerosol Inorganic Composition at a Tropical Site: Discrepancies Between Filter-Based Sampling and a Semi-Continuous Method. Aerosol Science and Technology, 2008, 42, 255-269.	3.1	10
350	Development of non-linear models predicting daily fine particle concentrations using aerosol optical depth retrievals and ground-based measurements at a municipality in the Brazilian Amazon region. Atmospheric Environment, 2018, 184, 156-165.	4.1	10
351	A new technique to measure trace elements in individual aerosol particles through scanning proton microprobe. Journal of Aerosol Science, 1992, 23, 373-376.	3.8	9
352	Analysis of atmospheric aerosols by PIXE: the importance of real time and complementary measurements. Nuclear Instruments & Methods in Physics Research B, 1999, 150, 312-321.	1.4	9
353	Plântulas de soja 'Tracajá' expostas ao ozônio sob condições controladas. Pesquisa Agropecuaria Brasileira, 2007, 42, 641-646.	0.9	9
354	Exploration of oxidative chemistry and secondary organic aerosol formation in the Amazon during the wet season: explicit modeling of the Manaus urban plume with GECKO-A. Atmospheric Chemistry and Physics, 2020, 20, 5995-6014.	4.9	9
355	The friagem event in the central Amazon and its influence on micrometeorological variables and atmospheric chemistry. Atmospheric Chemistry and Physics, 2021, 21, 339-356.	4.9	9
356	The SALTENA Experiment: Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes. Bulletin of the American Meteorological Society, 2022, 103, E212-E229.	3.3	9
357	Chronological studies of tree-rings from the Amazon Basin using thick target PIXE and proton backscattering analysis. Nuclear Instruments & Methods in Physics Research B, 1999, 150, 240-247.	1.4	8
358	Characterization of novel di- and tricarboxylic acids in fine tropical aerosols. Journal of Mass Spectrometry, 2001, 36, 403-416.	1.6	8
359	High risk of respiratory diseases in children in the fire period in Western Amazon. Revista De Saude Publica, 2016, 50,	1.7	8
360	Illustration of microphysical processes in Amazonian deep convective clouds in the gamma phase space: introduction and potential applications. Atmospheric Chemistry and Physics, 2017, 17, 14727-14746.	4.9	8

#	Article	IF	CITATIONS
361	A Four Carbon Organonitrate as a Significant Product of Secondary Isoprene Chemistry. Geophysical Research Letters, 2022, 49, .	4.0	8
362	Studying the spatial variability of Cr in agricultural field using both particle induced X-ray emission (PIXE) and instrumental neutron activation analysis (INAA) technique. Nuclear Instruments & Methods in Physics Research B, 1996, 109-110, 247-251.	1.4	7
363	Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 2021, 21, 8761-8773.	4.9	7
364	The Atmospheric Component of Biogeochemical Cycles in the Amazon Basin. , 2001, , .		7
365	Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest. Atmospheric Chemistry and Physics, 2020, 20, 15551-15584.	4.9	7
366	Linking the chemical composition and optical properties of biomass burning aerosols in Amazonia. Environmental Science Atmospheres, 2022, 2, 252-269.	2.4	7
367	How weather events modify aerosol particle size distributions in the Amazon boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 18065-18086.	4.9	7
368	MICRO-ANALYSIS TECHNIQUES FOR THE CHARACTERIZATION OF INDIVIDUAL ENVIRONMENTAL PARTICLES. Analytical Sciences, 1991, 7, 1117-1122.	1.6	6
369	An Integrated View of the Causes and Impacts of Atmospheric Changes. , 2003, , 207-230.		6
370	Scanning proton microprobe applied to analysis of individual aerosol particles from Amazon Basin. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 318-323.	1.4	5
371	Overview of the South American biomass burning analysis (SAMBBA) field experiment. , 2013, , .		5
372	Empirical formulation for multiple groups of primary biological ice nucleating particles from field observations over Amazonia. Journals of the Atmospheric Sciences, 2021, , .	1.7	5
373	Elemental composition of the atmospheric aerosol in the central amazon basin Quimica Nova, 2014, 37, .	0.3	5
374	Optical properties and spectral dependence of aerosol light absorption over the Brazilian Pantanal. Atmospheric Pollution Research, 2022, 13, 101413.	3.8	5
375	Corrigendum to "An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)" published in Atmos. Chem. Phys., 10, 11415–11438, 2010. Atmospheric Chemistry an Physics, 2010, 10, 11565-11565.	d 4.9	4
376	Mudanças climáticas e o Brasil. Revista USP, 2014, , 8.	0.1	4
377	Environmental Exposure Associated with Oxidative Stress Biomarkers in Children and Adolescents Residents in Brazilian Western Amazon. Journal of Environmental Protection, 2018, 09, 347-367.	0.7	4
378	Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science Atmospheres, 2022, 2, 230-240.	2.4	4

#	Article	IF	CITATIONS
379	Major Regional-Scale Production of O ₃ and Secondary Organic Aerosol in Remote Amazon Regions from the Dynamics and Photochemistry of Urban and Forest Emissions. Environmental Science & Technology, 2022, 56, 9924-9935.	10.0	4
380	Characterization of Individual Environmental Particles. Studies in Environmental Science, 1988, , 307-316.	0.0	3
381	Long term atmospheric aerosol characterization in the Amazon Basin. , 1998, , 247-272.		3
382	The chemistry and role of cloud condensation nuclei in the Amazon basin. Journal of Aerosol Science, 2000, 31, 62-63.	3.8	3
383	Interactions Between Biosphere, Atmosphere, and Human Land Use in the Amazon Basin: An Introduction. Ecological Studies, 2016, , 3-15.	1.2	3
384	Rehearsal for Assessment of atmospheric optical Properties during biomass burning Events and Long-range transportation episodes at Metropolitan Area of São Paulo-Brazil (RAPEL). EPJ Web of Conferences, 2018, 176, 08011.	0.3	3
385	The Amazon Basin and Land-Cover Change: A Future in the Balance?. Global Change - the IGBP Series, 2002, , 137-141.	2.1	3
386	Long-term measurements of aerosol optical properties and radiative forcing (2011-2017) over Central Amazonia. Atmosfera, 2022, 35, 143-163.	0.8	3
387	The Chemistry of Atmospheric Aerosol Particles in the Amazon Basin. ACS Symposium Series, 1995, , 265-280.	0.5	2
388	Preface [to special section on Smoke, Clouds, and Radiation-Brazil]. Journal of Geophysical Research, 1998, 103, 31781-31781.	3.3	2
389	Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts. , 2013, , .		2
390	Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar EPJ Web of Conferences, 2018, 176, 05037.	0.3	2
391	Measurement and modelling of the dynamics of NH ₃ surface–atmosphere exchange over the Amazonian rainforest. Biogeosciences, 2021, 18, 2809-2825.	3.3	2
392	The effects of biomass burning aerosols and clouds on the CO2flux in Amazonia. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, .	1.6	2
393	Satelliteâ€Based Detection of Secondary Droplet Activation in Convective Clouds. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
394	Effects of Air Pollution from Biomass Burning in Amazon: A Panel Study of Schoolchildren. Epidemiology, 2009, 20, S90.	2.7	1
395	Amazonia in Perspective as a Changing Environment. Ecological Studies, 2016, , 465-469.	1.2	1
396	In Situ and Remote Sensing Techniques for Measuring Aerosols, Clouds and Precipitation. , 2009, , 143-203.		1

#	Article	IF	CITATIONS
397	Adsorption of organic matter by inorganic particulate in air pollution. , 2010, , .		1
398	TWO-YEAR STUDY OF ATMOSPHERIC AEROSOLS IN ALTA FLORESTA, BRAZIL: MULTIELEMENTAL COMPOSITION, SOURCES AND SOURCE APPORTIONMENT. Journal of Aerosol Science, 2001, 32, 469-470.	3.8	1
399	Chapter 23: Impacts of deforestation and climate change on biodiversity, ecological processes, and environmental adaptation. , 2021, , .		1
400	Heavy metals in South America aerosol during 20 th century from Illimani ice-core, Eastern Bolivian Andes. European Physical Journal Special Topics, 2003, 107, 333-336.	0.2	0
401	DETAILED SIZE DISTRIBUTION OF THE PARTICULATE MASS AND OVER 20 ELEMENTS IN RONDÃ"NIA, BRAZIL, DURING SEPTEMBER-NOVEMBER 2002. Journal of Aerosol Science, 2004, 35, S1067-S1068.	3.8	Ο
402	Effects of the Humidity on Hospital Admissions by Respiratory Diseases in the Subequatorial Amazon. Epidemiology, 2009, 20, S219.	2.7	0
403	Schoolchildren Panel Study of Air Pollution from Biomass Burning in Amazon: Results by Gender and Age. Epidemiology, 2009, 20, S220-S221.	2.7	0
404	Direct and Semiâ€Direct Aerosol Effects: a Modeled Study for Biomass Burning Aerosol Radiative Forcing in the Amazon Region. , 2009, , .		0
405	Results from LBA and a vision for future Amazonian research. Geophysical Monograph Series, 2009, , 555-563.	0.1	0
406	Acidification in South America as a result of biomass burning emissions. IOP Conference Series: Earth and Environmental Science, 2009, 6, 462010.	0.3	0
407	Effects of the Climate Change on Hospital Admissions by Respiratory Diseases in the Subequatorial Amazon. Epidemiology, 2009, 20, S88.	2.7	0
408	Comparison of Health Effects From Exposure to Air Pollution Derived From Combustion of Fossil Fuels and Biomass Burning in Brazil. Epidemiology, 2011, 22, S194-S195.	2.7	0
409	Quantification of Exposure by PM2.5 From the Biomass Burning in the Brazilian Amazon: Estimative of Potential Dose. Epidemiology, 2011, 22, S211.	2.7	Ο
410	New aerosol particle formation in Amazonia. , 2013, , .		0
411	Long term measurements of the elemental composition and optical properties of aerosols in Amazonia. E3S Web of Conferences, 2013, 1, 03005.	0.5	0
412	Oxidative stress and inflammatory response in human lung cells exposed to biomass burning from particles. Toxicology Letters, 2016, 258, S258.	0.8	0
413	Biomass Burning as a Driver of Human Exposure to Particulate Matter in the Amazon Region. Epidemiology, 2009, 20, S81-S82.	2.7	0
414	Automated EPXMA of individual environmental particles. Proceedings Annual Meeting Electron Microscopy Society of America, 1992, 50, 1482-1483.	0.0	0

#	Article	IF	CITATIONS
415	Oportunidades de pesquisa em mudanças globais na área de quÃmica. Journal of the Brazilian Chemical Society, 1997, , .	0.6	0
416	IDENTIFICAÇÃO DE PICOS NA CONCENTRAÇÃO DE MP1 NA BACIA CENTRAL DA AMAZÔNIA DURANTE A ESTAÇÃO CHUVOSA DE 2015 (ATTO). , 2019, , .		0
417	Pesquisas sobre aerossóis atmosféricos urbano e remotos Grupo de Estudos de Poluição do Ar (GEPA). Boletim IG-USP Publicação Especial, 1989, .	0.0	0
418	Acute Effects of Inhalable Particles on the Frog Palate Mucociliary Epithelium. Environmental Health Perspectives, 1999, 107, 829.	6.0	0