Young Jong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1318958/publications.pdf

Version: 2024-02-01

		331670	1	197818
57	2,488	21		49
papers	citations	h-index		g-index
58	58	58		3359
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, 2014, 8, 627-634.	31.4	358
2	Single-Molecule Spectroscopy of Conjugated Polymers. Accounts of Chemical Research, 2005, 38, 602-610.	15.6	328
3	LTB4 Is a Signal-Relay Molecule during Neutrophil Chemotaxis. Developmental Cell, 2012, 22, 1079-1091.	7.0	267
4	The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials, 2010, 31, 5051-5062.	11.4	265
5	Broadband CARS spectral phase retrieval using a time-domain Kramers–Kronig transform. Optics Letters, 2009, 34, 1363.	3.3	186
6	Label-Free Cellular Imaging by Broadband Coherent Anti-Stokes Raman Scattering Microscopy. Biophysical Journal, 2010, 99, 2695-2704.	0.5	110
7	Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nature Communications, 2014, 5, 4414.	12.8	95
8	Maximum entropy and timeâ€domain Kramers–Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy. Journal of Raman Spectroscopy, 2012, 43, 637-643.	2.5	74
9	Quantitative, comparable coherent antiâ€Stokes Raman scattering (CARS) spectroscopy: correcting errors in phase retrieval. Journal of Raman Spectroscopy, 2016, 47, 408-415.	2.5	66
10	Quantitative Image Analysis of Broadband CARS Hyperspectral Images of Polymer Blends. Analytical Chemistry, 2011, 83, 2733-2739.	6.5	62
11	Multicomponent Chemical Imaging of Pharmaceutical Solid Dosage Forms with Broadband CARS Microscopy. Analytical Chemistry, 2013, 85, 8102-8111.	6.5	59
12	Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background. Journal of Raman Spectroscopy, 2009, 40, 726-731.	2.5	44
13	Stoichiometric analysis of competing intermolecular hydrogen bonds using infrared spectroscopy. RSC Advances, 2018, 8, 23481-23488.	3.6	43
14	Single Molecule Modulation Spectroscopy of Conjugated Polymers. Journal of Physical Chemistry B, 2005, 109, 12366-12371.	2.6	39
15	Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering. Optics Express, 2010, 18, 4371.	3.4	39
16	Characterization of three-color CARS in a two-pulse broadband CARS spectrum. Optics Letters, 2007, 32, 3370.	3.3	38
17	Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy. Applied Physics Letters, 2008, 92, 041108.	3.3	36
18	Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy. Tissue Engineering - Part C: Methods, 2014, 20, 562-569.	2.1	31

#	Article	IF	CITATIONS
19	Variable Temperature Single-Molecule Dynamics of MEH-PPV. ChemPhysChem, 2005, 6, 2404-2409.	2.1	29
20	Effect of Sample Preparation and Excitation Conditions on the Single Molecule Spectroscopy of Conjugated Polymers. Journal of Physical Chemistry B, 2006, 110, 9739-9742.	2.6	25
21	Imaging the Molecular Structure of Polyethylene Blends with Broadband Coherent Raman Microscopy. ACS Macro Letters, 2012, 1, 1347-1351.	4.8	23
22	Phonon dephasing and population decay dynamics of the G-band of semiconducting single-wall carbon nanotubes. Physical Review B, 2010, 82, .	3.2	20
23	Single-Molecule Studies of Electronic Energy Transfer in a Diblock Conjugated Polymer. Angewandte Chemie - International Edition, 2005, 44, 6207-6210.	13.8	18
24	Single cell viability measurements in 3D scaffolds using in situ label free imaging by optical coherence microscopy. Biomaterials, 2012, 33, 2119-2126.	11.4	18
25	Beam scanning for rapid coherent Raman hyperspectral imaging. Optics Letters, 2015, 40, 5826.	3.3	17
26	Raman Identification of Multiple Melting Peaks of Polyethylene. Macromolecules, 2017, 50, 6174-6183.	4.8	17
27	Phaseâ€specific Raman analysis of <i>n</i> à€alkane melting by movingâ€window twoâ€dimensional correlation spectroscopy. Journal of Raman Spectroscopy, 2016, 47, 1375-1384.	2.5	15
28	Accurate and interpretable classification of microspectroscopy pixels using artificial neural networks. Medical Image Analysis, 2017, 37, 37-45.	11.6	15
29	Compensation of Strong Water Absorption in Infrared Spectroscopy Reveals the Secondary Structure of Proteins in Dilute Solutions. Analytical Chemistry, 2021, 93, 2215-2225.	6.5	14
30	Real-time and high-throughput Raman signal extraction and processing in CARS hyperspectral imaging. Optics Express, 2020, 28, 20422.	3.4	13
31	The mechanism of electron–cation geminate recombination in liquid isooctane. Chemical Physics Letters, 2005, 403, 257-261.	2.6	12
32	Single-shot interferometric approach to background free broadband coherent anti- Stokes Raman scattering spectroscopy. Optics Express, 2009, 17, 123.	3.4	12
33	Coherent <scp>antiâ€6tokes</scp> Raman scattering microscopy for polymers. Journal of Polymer Science, 2022, 60, 1244-1265.	3.8	12
34	Determination of 3D molecular orientation by concurrent polarization analysis of multiple Raman modes in broadband CARS spectroscopy. Optics Express, 2015, 23, 29279.	3.4	10
35	Concurrent polarization IR analysis to determine the 3D angles and the order parameter for molecular orientation imaging. Optics Express, 2018, 26, 24577.	3.4	10
36	Pumpâ^Probe Spectroscopy of the Hydrated Electron in Reverse Micelles. Journal of Physical Chemistry B, 2004, 108, 3474-3478.	2.6	9

#	Article	IF	CITATIONS
37	Probing a molecular interface in a functioning organic diode. Applied Physics Letters, 2005, 87, 051906.	3.3	9
38	Kinetics of Electron Attachment to Reverse Micelles. Journal of Physical Chemistry B, 2004, 108, 5175-5178.	2.6	8
39	Imaging 3D molecular orientation by orthogonal-pair polarization IR microscopy. Optics Express, 2022, 30, 8436.	3.4	8
40	Photoluminescence of C60and Its Photofragments in the Gas Phase. Journal of Physical Chemistry A, 2002, 106, 5582-5590.	2.5	5
41	Analytical and Numerical Characterization of Autocorrelation and Perturbation-Correlation Moving-Window Methods. Applied Spectroscopy, 2017, 71, 1321-1333.	2.2	5
42	Position- and Polarization-Specific Waveguiding of Multi-Emissions in Single ZnO Nanorods. ACS Photonics, 2019, 6, 1416-1424.	6.6	5
43	Comment on "Nanosecond-Gated Detection of Room-Temperature Fluorescence of C60 in Solution". Physical Review Letters, 1994, 73, 2634-2634.	7.8	3
44	Anisotropy quantum beat in two-photon ionization of coherently excited hyperfine states of Na. Journal of Chemical Physics, 2001, 115, 739-742.	3.0	3
45	Least Squares Moving-Window Spectral Analysis. Applied Spectroscopy, 2017, 71, 1894-1905.	2.2	3
46	Mapping Chemistry, Composition, and Dynamics with Coherent Raman Imaging. Microscopy and Microanalysis, 2016, 22, 1074-1075.	0.4	2
47	A Coordinate-Descent-Based Approach to Solving the Sparse Group Elastic Net. Technometrics, 2017, 59, 437-445.	1.9	2
48	Three-Dimensional Molecular Orientation Imaging of a Semicrystalline Polymer Film under Shear Deformation. Macromolecules, 2022, 55, 2627-2635.	4.8	2
49	Pulse shaping for background free broadband CARS. , 2009, , .		1
50	Theory of birefringence correction for polarization-controlled CARS. Optics Express, 2020, 28, 9158.	3.4	1
51	Single-Molecule Spectroscopy of Conjugated Polymers. ChemInform, 2005, 36, no.	0.0	O
52	Broadband CARS Microscopy: Noninvasive Chemical and Time-Resolved Imaging for Biology and Materials. , $2010, \ldots$		0
53	Experimental determination of the ratio of partial photoionization cross sections from Na 3p ² P _{3/2} by polarization anisotropy quantum beats. Molecular Physics, 20 110, 1781-1785.	124.7	O
54	Beam-Scanning Broadband Cars Microscopy for Rapid Tissue Imaging. Biophysical Journal, 2015, 108, 480a.	0.5	0

Young Jong Lee

#	Article	IF	CITATIONS
55	Time-Resolved Single Molecule Spectroscopy of Conjugated Polymer Nanoparticles. , 2006, , 284-294.		O
56	Fluorescence-Voltage Single Molecule Spectroscopy. , 2008, , 1300-1306.		0
57	Scanning offset-emission hyperspectral microscopy (SOHM) of waveguiding in single ZnO nanorod. , 2020, , .		O