Julien Y Dutheil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1318509/publications.pdf

Version: 2024-02-01

55 papers

4,391 citations

28 h-index 52 g-index

90 all docs 90 docs citations

90 times ranked 5553 citing authors

#	Article	IF	CITATIONS
1	The Structural Determinants of Intra-Protein Compensatory Substitutions. Molecular Biology and Evolution, 2022, 39, .	8.9	3
2	Plant pathogens provide clues to the potential origin of bat white-nose syndrome <i>Pseudogymnoascus destructans</i> . Virulence, 2022, 13, 1020-1031.	4.4	6
3	Population Genomics of the Maize Pathogen <i>Ustilago maydis</i> : Demographic History and Role of Virulence Clusters in Adaptation. Genome Biology and Evolution, 2021, 13, .	2.5	11
4	Variation of the adaptive substitution rate between species and within genomes. Evolutionary Ecology, 2020, 34, 315-338.	1.2	30
5	The insertion of a mitochondrial selfish element into the nuclear genome and its consequences. Ecology and Evolution, 2020, 10, 11117-11132.	1.9	4
6	On Variant Discovery in Genomes of Fungal Plant Pathogens. Frontiers in Microbiology, 2020, 11, 626.	3.5	16
7	A Population Genomics Lexicon. Methods in Molecular Biology, 2020, 2090, 3-17.	0.9	3
8	Processing and Analyzing Multiple Genomes Alignments with MafFilter. Methods in Molecular Biology, 2020, 2090, 21-48.	0.9	3
9	Ancestral Population Genomics. Methods in Molecular Biology, 2019, 1910, 555-589.	0.9	2
10	Inference of recombination maps from a single pair of genomes and its application to ancient samples. PLoS Genetics, 2019, 15, e1008449.	3.5	34
11	The Impact of Protein Architecture on Adaptive Evolution. Molecular Biology and Evolution, 2019, 36, 2013-2028.	8.9	42
12	The genomic determinants of adaptive evolution in a fungal pathogen. Evolution Letters, 2019, 3, 299-312.	3.3	61
13	Title is missing!. , 2019, 15, e1008449.		0
14	Title is missing!. , 2019, 15, e1008449.		0
15	Title is missing!. , 2019, 15, e1008449.		0
16	Title is missing!. , 2019, 15, e1008449.		0
17	Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots. Genetics, 2018, 208, 1209-1229.	2.9	61
18	Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum. Genome Biology and Evolution, 2018, 10, 629-645.	2.5	48

#	Article	IF	CITATIONS
19	The Evolution of Gene-Specific Transcriptional Noise Is Driven by Selection at the Pathway Level. Genetics, 2018, 208, 173-189.	2.9	41
20	Hidden Markov Models in Population Genomics. Methods in Molecular Biology, 2017, 1552, 149-164.	0.9	6
21	The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. PLoS Pathogens, 2016, 12, e1005697.	4.7	65
22	hotspot: software to support sperm-typing for investigating recombination hotspots. Bioinformatics, 2016, 32, 2554-2555.	4.1	1
23	A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Genome Biology and Evolution, 2016, 8, 681-704.	2.5	125
24	Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6413-6418.	7.1	75
25	Optimization of sequence alignments according to the number of sequences vs. number of sites trade-off. BMC Bioinformatics, 2015, 16, 190.	2.6	6
26	Strong Selective Sweeps on the X Chromosome in the Human-Chimpanzee Ancestor Explain Its Low Divergence. PLoS Genetics, 2015, 11, e1005451.	3.5	56
27	MafFilter: a highly flexible and extensible multiple genome alignment files processor. BMC Genomics, 2014, 15, 53.	2.8	68
28	Mitochondrial <scp>DNA</scp> as a tool for reconstructing past lifeâ€history traits in mammals. Journal of Evolutionary Biology, 2014, 27, 899-910.	1.7	17
29	A fine-scale recombination map of the human-chimpanzee ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-biased gene conversion. Genome Research, 2014, 24, 467-474.	5.5	37
30	Bio++: Efficient Extensible Libraries and Tools for Computational Molecular Evolution. Molecular Biology and Evolution, 2013, 30, 1745-1750.	8.9	163
31	A New Isolation with Migration Model along Complete Genomes Infers Very Different Divergence Processes among Closely Related Great Ape Species. PLoS Genetics, 2012, 8, e1003125.	3.5	102
32	Detecting coevolving positions in a molecule: why and how to account for phylogeny. Briefings in Bioinformatics, 2012, 13, 228-243.	6.5	41
33	Efficient Selection of Branch-Specific Models of Sequence Evolution. Molecular Biology and Evolution, 2012, 29, 1861-1874.	8.9	56
34	Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10954-10959.	7.1	171
35	Accelerated evolution and coevolution drove the evolutionary history of AGPase sub-units during angiosperm radiation. Annals of Botany, 2012, 109, 693-708.	2.9	9
36	Ancestral Population Genomics. Methods in Molecular Biology, 2012, 856, 293-313.	0.9	15

#	Article	IF	Citations
37	Comparing Fungal Genomes: Insight into Functional and Evolutionary Processes. Methods in Molecular Biology, 2012, 835, 531-548.	0.9	7
38	Fast and Robust Characterization of Time-Heterogeneous Sequence Evolutionary Processes Using Substitution Mapping. PLoS ONE, 2012, 7, e33852.	2.5	47
39	The bonobo genome compared with the chimpanzee and human genomes. Nature, 2012, 486, 527-531.	27.8	445
40	Insights into hominid evolution from the gorilla genome sequence. Nature, 2012, 483, 169-175.	27.8	663
41	Comparative and demographic analysis of orang-utan genomes. Nature, 2011, 469, 529-533.	27.8	541
42	The making of a new pathogen: Insights from comparative population genomics of the domesticated wheat pathogen <i>Mycosphaerella graminicola </i> and its wild sister species. Genome Research, 2011, 21, 2157-2166.	5.5	191
43	Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome Research, 2011, 21, 349-356.	5.5	192
44	IMPACT: Integrated Multiprogram Platform for Analyses in ConTest. Journal of Heredity, 2011, 102, 366-369.	2.4	2
45	Estimating Divergence Time and Ancestral Effective Population Size of Bornean and Sumatran Orangutan Subspecies Using a Coalescent Hidden Markov Model. PLoS Genetics, 2011, 7, e1001319.	3.5	79
46	Base Pairing Constraints Drive Structural Epistasis in Ribosomal RNA Sequences. Molecular Biology and Evolution, 2010, 27, 1868-1876.	8.9	32
47	Ancestral Population Genomics: The Coalescent Hidden Markov Model Approach. Genetics, 2009, 183, 259-274.	2.9	96
48	Detecting Site-Specific Biochemical Constraints Through Substitution Mapping. Journal of Molecular Evolution, 2008, 67, 257-265.	1.8	11
49	Non-homogeneous models of sequence evolution in the Bio++ suite of libraries and programs. BMC Evolutionary Biology, 2008, 8, 255.	3.2	122
50	Evolutionary Modeling of Rate Shifts Reveals Specificity Determinants in HIV-1 Subtypes. PLoS Computational Biology, 2008, 4, e1000214.	3.2	30
51	Coevolution within and between Genes. , 2007, 3, 1-12.		6
52	Detecting groups of co-evolving positions in a molecule: a clustering approach. BMC Evolutionary Biology, 2007, 7, 242.	3.2	46
53	Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics, 2006, 7, 188.	2.6	101
54	Recombination Difference between Sexes: A Role for Haploid Selection. PLoS Biology, 2005, 3, e63.	5.6	238

#	Article	IF	CITATIONS
55	A Model-Based Approach for Detecting Coevolving Positions in a Molecule. Molecular Biology and Evolution, 2005, 22, 1919-1928.	8.9	131