
Elaine M Bignell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1316016/publications.pdf Version: 2024-02-01

FLAINE M RICNELL

#	Article	IF	CITATIONS
1	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	13.6	64
2	Tackling the emerging threat of antifungal resistance to human health. Nature Reviews Microbiology, 2022, 20, 557-571.	28.6	311
3	Exploring a novel genomic safe-haven site in the human pathogenic mould Aspergillus fumigatus. Fungal Genetics and Biology, 2022, 161, 103702.	2.1	2
4	Live-cell imaging of rapid calcium dynamics using fluorescent, genetically-encoded GCaMP probes with Aspergillus fumigatus. Fungal Genetics and Biology, 2021, 151, 103470.	2.1	7
5	On the lineage of <i>Aspergillus fumigatus</i> isolates in common laboratory use. Medical Mycology, 2021, 59, 7-13.	0.7	57
6	Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response. PLoS Biology, 2021, 19, e3001247.	5.6	8
7	Bayesian Detection of Piecewise Linear Trends in Replicated Time-Series with Application to Growth Data Modelling. International Journal of Biostatistics, 2020, 16, .	0.7	5
8	Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic Imbalance That Impacts Cell Energetics, Growth, and Virulence. MBio, 2020, 11, .	4.1	14
9	Development of a marker-free mutagenesis system using CRISPR-Cas9 in the pathogenic mould Aspergillus fumigatus. Fungal Genetics and Biology, 2020, 145, 103479.	2.1	33
10	The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nature Communications, 2020, 11, 427.	12.8	100
11	Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Frontiers in Microbiology, 2019, 10, 2311.	3.5	39
12	Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiology Reviews, 2019, 43, 145-161.	8.6	24
13	Mechanistic Basis of pH-Dependent 5-Flucytosine Resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	36
14	Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease. Journal of Fungi (Basel,) Tj ETQqO	0 0 ₃ rgBT /0	Overlock 10 T
15	Mutual independence of alkaline―and calciumâ€mediated signalling in <i>Aspergillus fumigatus</i> refutes the existence of a conserved druggable signalling nexus. Molecular Microbiology, 2017, 106, 861-875.	2.5	12
16	Editorial overview: The fungal infection arena in animal and plant hosts: dynamics at the interface. Current Opinion in Microbiology, 2016, 32, v-vii.	5.1	1
17	Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more?. Current Opinion in Microbiology, 2016, 32, 151-158.	5.1	21
18	Secondary metabolite arsenal of an opportunistic pathogenic fungus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160023.	4.0	88

Elaine M Bignell

#	Article	IF	CITATIONS
19	Refining the <scp>pH</scp> response in <scp><i>A</i></scp> <i>spergillus nidulans</i> : a modulatory triad involving <scp>PacX</scp> , a novel zinc binuclear cluster protein. Molecular Microbiology, 2015, 98, 1051-1072.	2.5	14
20	In silico modeling of spore inhalation reveals fungal persistence following low dose exposure. Scientific Reports, 2015, 5, 13958.	3.3	27
21	Different Stress-Induced Calcium Signatures Are Reported by Aequorin-Mediated Calcium Measurements in Living Cells of Aspergillus fumigatus. PLoS ONE, 2015, 10, e0138008.	2.5	20
22	The pH-Responsive PacC Transcription Factor of Aspergillus fumigatus Governs Epithelial Entry and Tissue Invasion during Pulmonary Aspergillosis. PLoS Pathogens, 2014, 10, e1004413.	4.7	151
23	Distribution, expression and expansion of Aspergillus fumigatus LINE-like retrotransposon populations in clinical and environmental isolates. Fungal Genetics and Biology, 2014, 64, 36-44.	2.1	4
24	A Modified Recombineering Protocol for the Genetic Manipulation of Gene Clusters in Aspergillus fumigatus. PLoS ONE, 2014, 9, e111875.	2.5	2
25	Mevalonate governs interdependency of ergosterol and siderophore biosyntheses in the fungal pathogen Aspergillus fumigatus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E497-E504.	7.1	111
26	Conservation in <i>Aspergillus fumigatus</i> of pHâ€signaling seven transmembrane domain and arrestin proteins, and implications for drug discovery. Annals of the New York Academy of Sciences, 2012, 1273, 35-43.	3.8	5
27	The Molecular Basis of pH Sensing, Signaling, and Homeostasis in Fungi. Advances in Applied Microbiology, 2012, 79, 1-18.	2.4	24
28	Targeted Disruption of Nonribosomal Peptide Synthetase <i>pes3</i> Augments the Virulence of Aspergillus fumigatus. Infection and Immunity, 2011, 79, 3978-3992.	2.2	55
29	Complete nucleotide sequences of four dsRNAs associated with a new chrysovirus infecting Aspergillus fumigatus. Virus Research, 2010, 153, 64-70.	2.2	62
30	The conserved and divergent roles of carbonic anhydrases in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans. Molecular Microbiology, 2009, 76, 802-802.	2.5	2
31	Functional characterization of the <i>Aspergillus fumigatus</i> CRZ1 homologue, CrzA. Molecular Microbiology, 2008, 67, 1274-1291.	2.5	166
32	Ambient pH gene regulation in fungi: making connections. Trends in Microbiology, 2008, 16, 291-300.	7.7	319
33	Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis. PLoS Pathogens, 2008, 4, e1000154.	4.7	228
34	Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection. PLoS Pathogens, 2007, 3, e128.	4.7	359
35	Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. Journal of Experimental Medicine, 2004, 200, 1213-1219.	8.5	446
36	The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Molecular Microbiology, 2004, 52, 785-799.	2.5	119

1

37The Aspergillus pH-responsive transcription factor PacC regulates virulence. Molecular2.510037Microbiology, 2004, 55, 1072-1084.2.5100	#	Article	IF	CITATIONS
	37	The Aspergillus pH-responsive transcription factor PacC regulates virulence. Molecular Microbiology, 2004, 55, 1072-1084.	2.5	100

Reactive Oxygen Intermediates, pH, and Calcium. , 0, , 215-228.