List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1315230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun Materials for Batteries Moving Beyond Lithium-Ion Technologies. Electrochemical Energy Reviews, 2022, 5, 211-241.	25.5	44
2	The possible implications of magnetic field effect on understanding the reactant of water splitting. Chinese Journal of Catalysis, 2022, 43, 148-157.	14.0	31
3	Revealing the Fast and Durable Na ⁺ Insertion Reactions in a Layered Na ₃ Fe ₃ (PO ₄) ₄ Anode for Aqueous Na-Ion Batteries. ACS Materials Au, 2022, 2, 63-71.	6.0	7
4	Surface Reconstruction of Perovskites for Water Oxidation: The Role of Initial Oxides' Bulk Chemistry. Small Science, 2022, 2, 2100048.	9.9	21
5	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie, 2022, 134, .	2.0	24
6	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	124
7	Electrospinning for flexible sodium-ion batteries. Energy Storage Materials, 2022, 45, 704-719.	18.0	48
8	Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. Materials, 2022, 15, 1053.	2.9	17
9	Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. EScience, 2022, 2, 87-94.	41.6	40
10	Suppressing thermal quenching of lead halide perovskite nanocrystals by constructing a wide-bandgap surface layer for achieving thermally stable white light-emitting diodes. Chemical Science, 2022, 13, 3719-3727.	7.4	25
11	A Discrete 3d–4f Metallacage as an Efficient Catalytic Nanoreactor for a Three-Component Aza-Darzens Reaction. Inorganic Chemistry, 2022, 61, 4009-4017.	4.0	10
12	Rooting Zn into metallic Na bulk for energetic metal anode. Science China Materials, 2022, 65, 1789-1796.	6.3	9
13	Electro-Oxidation of Glycerol to High-Value-Added C1–C3 Products by Iron-Substituted Spinel Zinc Cobalt Oxides. ACS Applied Materials & Interfaces, 2022, 14, 14293-14301.	8.0	23
14	Simultaneous reduction and sequestration of hexavalent chromium by magnetic β-Cyclodextrin stabilized Fe3S4. Journal of Hazardous Materials, 2022, 431, 128592.	12.4	28
15	Unexpected Intrinsic Catalytic Function of Porous Boron Nitride Nanorods for Highly Efficient Peroxymonosulfate Activation in Water Treatment. ACS Applied Materials & Interfaces, 2022, 14, 18409-18419.	8.0	14
16	High-Efficiency Semitransparent Light-Emitting Diodes with Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2022, 14, 19697-19703.	8.0	8
17	Controlled Growth of 3D Interpenetrated Networks by NiCo ₂ O ₄ and Graphdiyne for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2022, 14, 18283-18292.	8.0	17
18	Electrochemistry in Magnetic Fields. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64

#	Article	IF	CITATIONS
19	Electrochemistry in Magnetic Fields. Angewandte Chemie, 2022, 134, .	2.0	6
20	Understanding the Role of Topotactic Anion Exchange in the Robust Cu Ion Storage of CuS _{1–<i>x</i>} Se _{<i>x</i>} . ACS Energy Letters, 2022, 7, 1835-1841.	17.4	13
21	Stable Leadâ€Free Tin Halide Perovskite with Operational Stability >1200 h by Suppressing Tin(II) Oxidation. Angewandte Chemie, 2022, 134, .	2.0	2
22	The 2022 solar fuels roadmap. Journal Physics D: Applied Physics, 2022, 55, 323003.	2.8	58
23	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	14.9	59
24	Size Effects of Electrocatalysts: More Than a Variation of Surface Area. ACS Nano, 2022, 16, 8531-8539.	14.6	42
25	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie, 2021, 133, 7564-7577.	2.0	16
26	Metal Halide Perovskite Nanocrystals in Metal–Organic Framework Host: Not Merely Enhanced Stability. Angewandte Chemie - International Edition, 2021, 60, 7488-7501.	13.8	80
27	A Perspective on the Behavior of Lithium Anodes under a Magnetic Field. Small Structures, 2021, 2, 2000043.	12.0	34
28	Persistent Conjugated Backbone and Disordered Lamellar Packing Impart Polymers with Efficient nâ€Đoping and High Conductivities. Advanced Materials, 2021, 33, e2005946.	21.0	99
29	1,3-Dichloropropene and chloropicrin emission reduction using a flexible CuInS2/ZnS:Al-TiO2 photocatalytic film. Environmental Science and Pollution Research, 2021, 28, 6980-6989.	5.3	Ο
30	Synthesis of C-Plane Oriented Hexagonal Tungsten Oxide Membranes on Tubular Substrates and Their Acetic Acid/Water Separation Performances. Membranes, 2021, 11, 38.	3.0	1
31	One-Step Block Copolymer Templated Synthesis of Bismuth Oxybromide for Bisphenol A Degradation: An Extended Study from Photocatalysis to Chemical Oxidation. ACS ES&T Water, 2021, 1, 837-846.	4.6	16
32	Molybdenumâ€based materials for sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021, 3, 339-352.	17.3	65
33	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. Angewandte Chemie, 2021, 133, 7494-7501.	2.0	8
34	Anodic Oxidation Enabled Cation Leaching for Promoting Surface Reconstruction in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 7418-7425.	13.8	130
35	Confined Synthesis of Stable and Uniform CsPbBr ₃ Nanocrystals with High Quantum Yield up to 90% by High Temperature Solid‣tate Reaction. Advanced Optical Materials, 2021, 9, 2002130.	7.3	40
36	Recent Development of Oxygen Evolution Electrocatalysts in Acidic Environment. Advanced Materials, 2021, 33, e2006328.	21.0	392

#	Article	IF	CITATIONS
37	An Energetic CuS–Cu Battery System Based on CuS Nanosheet Arrays. ACS Nano, 2021, 15, 5420-5427.	14.6	66
38	Raw biomass electroreforming coupled to green hydrogen generation. Nature Communications, 2021, 12, 2008.	12.8	104
39	Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nature Photonics, 2021, 15, 379-385.	31.4	260
40	Electrochemically Anodized V ₂ O ₅ as an Efficient Sodium Cathode. Energy & Fuels, 2021, 35, 8358-8364.	5.1	8
41	Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12, 2608.	12.8	242
42	Weak localization and electron-phonon interaction in layered Zintl phase SrIn2P2 single crystal. Journal of Physics Condensed Matter, 2021, 33, 245701.	1.8	1
43	A discussion on the possible involvement of singlet oxygen in oxygen electrocatalysis. JPhys Energy, 2021, 3, 031004.	5.3	31
44	Engineering High‧pin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. Angewandte Chemie, 2021, 133, 14657-14665.	2.0	24
45	Engineering High‧pin State Cobalt Cations in Spinel Zinc Cobalt Oxide for Spin Channel Propagation and Active Site Enhancement in Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 14536-14544.	13.8	149
46	Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12, 3634.	12.8	186
47	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nature Communications, 2021, 12, 3992.	12.8	151
48	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
49	Nano ferric oxide adsorbents with self-acidification effect for efficient adsorption of Sb(V). Chemosphere, 2021, 272, 129933.	8.2	9
50	Effects of catalyst mass loading on electrocatalytic activity: An example of oxygen evolution reaction. Fundamental Research, 2021, 1, 448-452.	3.3	18
51	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust sodium anode. Sustainable Materials and Technologies, 2021, 28, e00255.	3.3	5
52	23.6: Invited Paper: Enhancing the Stability and Efficiency of Perovskite Nanocrystals Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 306-306.	0.3	0
53	Ferromagnetic–Antiferromagnetic Coupling Core–Shell Nanoparticles with Spin Conservation for Water Oxidation. Advanced Materials, 2021, 33, e2101091.	21.0	77
54	SmCo ₅ with a Reconstructed Oxyhydroxide Surface for Spin‣elective Water Oxidation at Elevated Temperature. Angewandte Chemie - International Edition, 2021, 60, 25884-25890.	13.8	51

#	Article	IF	CITATIONS
55	Interference Effect between Lithium Nitrate Additive and the Polysulfide Adsorber Magnesium Ferrite in Lithium-Sulfur Cells. Journal of the Electrochemical Society, 2021, 168, 090556.	2.9	0
56	Narrow-Band Violet-Light-Emitting Diodes Based on Stable Cesium Lead Chloride Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 3545-3554.	17.4	39
57	Atomic layer deposition triggered Fe-In-S cluster and gradient energy band in ZnInS photoanode for improved oxygen evolution reaction. Nature Communications, 2021, 12, 5247.	12.8	36
58	The importance of the dissolution of polysulfides in lithium-sulfur batteries and a perspective on high-energy electrolyte/cathode design. Electrochimica Acta, 2021, 392, 139013.	5.2	9
59	Toward Coordination Control of Multiple Fish-Like Robots: Real-Time Vision-Based Pose Estimation and Tracking via Deep Neural Networks. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1964-1976.	13.1	10
60	Oxygen evolution in spin-sensitive pathways. Current Opinion in Electrochemistry, 2021, 30, 100804.	4.8	32
61	CsPbBr ₃ Nanocrystal Light-Emitting Diodes with Efficiency up to 13.4% Achieved by Careful Surface Engineering and Device Engineering. Journal of Physical Chemistry C, 2021, 125, 3110-3118.	3.1	29
62	Active Phase on SrCo _{1–<i>x</i>} Fe _{<i>x</i>} O _{3â^î^} (0 ≤i>x â‰Ф Perovskite for Water Oxidation: Reconstructed Surface versus Remaining Bulk. Jacs Au, 2021, 1, 108-115.	5) 7.9	47
63	Facile synthesis of palladium incorporated NiCo2O4 spinel for low temperature methane combustion: Activate lattice oxygen to promote activity. Journal of Catalysis, 2021, 404, 400-410.	6.2	23
64	Catalytically Influential Features in Transition Metal Oxides. ACS Catalysis, 2021, 11, 13947-13954.	11.2	38
65	Nitrogen-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells. Chemical Research in Chinese Universities, 2021, 37, 1275-1282.	2.6	2
66	Lattice site–dependent metal leaching in perovskites toward a honeycomb-like water oxidation catalyst. Science Advances, 2021, 7, eabk1788.	10.3	41
67	Removal and recovery of chloride ions in concentrated leachate by Bi(III) containing oxides quantum dots/two-dimensional flakes. Journal of Hazardous Materials, 2020, 382, 121041.	12.4	27
68	Transition metal oxides for water oxidation: All about oxyhydroxides?. Science China Materials, 2020, 63, 3-7.	6.3	81
69	The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1901566.	19.5	89
70	Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chemistry of Materials, 2020, 32, 308-314.	6.7	57
71	Ceramic-like stable CsPbBr3 nanocrystals encapsulated in silica derived from molecular sieve templates. Nature Communications, 2020, 11, 31.	12.8	185
72	Saltâ€Assisted Growth of Pâ€ŧype Cu ₉ S ₅ Nanoflakes for Pâ€N Heterojunction Photodetectors with High Responsivity. Advanced Functional Materials, 2020, 30, 1908382.	14.9	40

#	Article	IF	CITATIONS
73	Twoâ€Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binderâ€free Lithiumâ€lon Battery. ChemSusChem, 2020, 13, 2457-2463.	6.8	159
74	The interplay between the suprafacial and intrafacial mechanisms for complete methane oxidation on substituted LaCoO3 perovskite oxides. Journal of Catalysis, 2020, 390, 1-11.	6.2	32
75	Spinâ€Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2003297.	21.0	240
76	The construction of the novel magnetic prodrug Fe3O4@DOX and its antagonistic effects on hepatocarcinoma with low toxicity. RSC Advances, 2020, 10, 28965-28974.	3.6	6
77	Synthesis of lead halide perovskite nanocrystals by melt crystallization in halide salts. Chemical Communications, 2020, 56, 11291-11294.	4.1	12
78	Integrated multifunctional macrostructures for electromagnetic wave absorption and shielding. Journal of Materials Chemistry A, 2020, 8, 24368-24387.	10.3	145
79	Spontaneously Splitting Copper Nanowires into Quantum Dots on Graphdiyne for Suppressing Lithium Dendrites. Advanced Materials, 2020, 32, e2004379.	21.0	74
80	Enhancing the performance of LARP-synthesized CsPbBr ₃ nanocrystal LEDs by employing a dual hole injection layer. RSC Advances, 2020, 10, 17653-17659.	3.6	13
81	Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Advanced Materials, 2020, 32, e2000288.	21.0	55
82	Ir-skinned Ir-Cu Nanoparticles with Enhanced Activity for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 2020, 36, 467-472.	2.6	5
83	Unconventional Mn Vacancies in Mn–Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage. CheM, 2020, 6, 1804-1818.	11.7	148
84	Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nature Catalysis, 2020, 3, 554-563.	34.4	284
85	Designing a Transparent CdIn ₂ S ₄ /In ₂ S ₃ Bulkâ€Heterojunction Photoanode Integrated with a Perovskite Solar Cell for Unbiased Water Splitting. Advanced Materials, 2020, 32, e2002893.	21.0	67
86	Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 14106-14113.	10.3	18
87	Hydrogen peroxide sol–gel coating of microencapsulated phase change materials by metal oxides. Journal of Sol-Gel Science and Technology, 2020, 95, 649-660.	2.4	9
88	A Flexible and Lightweight Biomass-Reinforced Microwave Absorber. Nano-Micro Letters, 2020, 12, 125.	27.0	234
89	Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e2001292.	21.0	122
90	Enhanced Thermal Buffering of Phase Change Materials by the Intramicrocapsule Sub per Mille CNT Dopant. ACS Applied Materials & Interfaces, 2020, 12, 16227-16235.	8.0	16

#	Article	IF	CITATIONS
91	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie - International Edition, 2020, 59, 9418-9422.	13.8	108
92	Revealing the Impact of Electrolyte Composition for Co-Based Water Oxidation Catalysts by the Study of Reaction Kinetics Parameters. ACS Catalysis, 2020, 10, 4160-4170.	11.2	43
93	Green synthesis of hierarchically porous carbons with tunable dielectric response for microwave absorption. Ceramics International, 2020, 46, 15447-15455.	4.8	48
94	Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 1487-1497.	17.4	104
95	Enhancing the Charge Transportation Ability of Yolk–Shell Structure for High-Rate Sodium and Potassium Storage. ACS Nano, 2020, 14, 4463-4474.	14.6	56
96	Electrocatalysis: A Core Technique for a Sustainable Future. Chemistry - A European Journal, 2020, 26, 3897-3897.	3.3	11
97	A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 2020, 49, 2196-2214.	38.1	1,466
98	Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries. Nano-Micro Letters, 2020, 12, 141.	27.0	18
99	In Situ Coating Graphdiyne for Highâ€Energyâ€Density and Stable Organic Cathodes. Advanced Materials, 2020, 32, e2000140.	21.0	72
100	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308
101	Bifunctional Passivation Strategy to Achieve Stable CsPbBr ₃ Nanocrystals with Drastically Reduced Thermal-Quenching. Journal of Physical Chemistry Letters, 2020, 11, 993-999.	4.6	32
102	Dualâ€Doped Hematite Nanorod Arrays on Carbon Cloth as a Robust and Flexible Sodium Anode. Advanced Functional Materials, 2020, 30, 1910043.	14.9	39
103	1000 h Operational Lifetime Perovskite Solar Cells by Ambient Melting Encapsulation. Advanced Energy Materials, 2020, 10, 1902472.	19.5	98
104	Electrochemical Oxidation of Nitrogen towards Direct Nitrate Production on Spinel Oxides. Angewandte Chemie, 2020, 132, 9504-9508.	2.0	31
105	Surface Composition Dependent Ligand Effect in Tuning the Activity of Nickel–Copper Bimetallic Electrocatalysts toward Hydrogen Evolution in Alkaline. Journal of the American Chemical Society, 2020, 142, 7765-7775.	13.7	234
106	Antiferromagnetic Inverse Spinel Oxide LiCoVO ₄ with Spinâ€Polarized Channels for Water Oxidation. Advanced Materials, 2020, 32, e1907976.	21.0	106
107	Surface Oxidation of Quantum Dots to Improve the Device Performance of Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28424-28430.	3.1	12
108	A Universal Strategy for Constructing Seamless Graphdiyne on Metal Oxides to Stabilize the Electrochemical Structure and Interface. Advanced Materials, 2019, 31, e1806272.	21.0	59

#	Article	IF	CITATIONS
109	Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803024.	19.5	117
110	NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy, 2019, 64, 103941.	16.0	83
111	Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nature Catalysis, 2019, 2, 763-772.	34.4	678
112	Significance of Engineering the Octahedral Units to Promote the Oxygen Evolution Reaction of Spinel Oxides. Advanced Materials, 2019, 31, e1902509.	21.0	201
113	Recent Progress on 2D Nobleâ€Transitionâ€Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1904932.	14.9	186
114	Largeâ€Area Aminatedâ€Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angewandte Chemie - International Edition, 2019, 58, 15010-15015.	13.8	88
115	Two-dimensional inorganic molecular crystals. Nature Communications, 2019, 10, 4728.	12.8	91
116	Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. Small, 2019, 15, e1903188.	10.0	57
117	Surface Ligand Engineering toward Brightly Luminescent and Stable Cesium Lead Halide Perovskite Nanoplatelets for Efficient Blue-Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 26161-26169.	3.1	59
118	Largeâ€Area Aminatedâ€Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angewandte Chemie, 2019, 131, 15152-15157.	2.0	23
119	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	2.9	5
120	Switch of the Rate-Determining Step of Water Oxidation by Spin-Selected Electron Transfer in Spinel Oxides. Chemistry of Materials, 2019, 31, 8106-8111.	6.7	87
121	Boosting Electrochemical CO ₂ Reduction on Metal–Organic Frameworks via Ligand Doping. Angewandte Chemie, 2019, 131, 4081-4085.	2.0	66
122	Boosting Electrochemical CO ₂ Reduction on Metal–Organic Frameworks via Ligand Doping. Angewandte Chemie - International Edition, 2019, 58, 4041-4045.	13.8	199
123	Chemical Vapor Deposition Growth of High Crystallinity Sb ₂ Se ₃ Nanowire with Strong Anisotropy for Nearâ€Infrared Photodetectors. Small, 2019, 15, e1805307.	10.0	93
124	Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials, 2019, 31, e1807898.	21.0	215
125	Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4259-4290.	10.3	249
126	Influence of Fe Substitution into LaCoO ₃ Electrocatalysts on Oxygen-Reduction Activity. ACS Applied Materials & Interfaces, 2019, 11, 5682-5686.	8.0	54

#	Article	IF	CITATIONS
127	Multifunctional Mixedâ€Dimensional MoS ₂ –CuO Junction Fieldâ€Effect Transistor for Logic Operation and Phototransistor. Advanced Electronic Materials, 2019, 5, 1800976.	5.1	30
128	Critical role of metal ions in surface engineering toward brightly luminescent and stable cesium lead bromide perovskite quantum dots. Nanoscale, 2019, 11, 2602-2607.	5.6	33
129	Phase Change Materials: Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins (Adv. Mater. Interfaces 12/2019). Advanced Materials Interfaces, 2019, 6, 1970077.	3.7	0
130	Selective Electroreduction of Carbon Dioxide to Formic Acid on Cobaltâ€Decorated Copper Thin Films. Small Methods, 2019, 3, 1900362.	8.6	19
131	Origin of electronic structure dependent activity of spinel ZnNixCo2-xO4 oxides for complete methane oxidation. Applied Catalysis B: Environmental, 2019, 256, 117844.	20.2	35
132	Sacrificial oxidation of a self-metal source for the rapid growth of metal oxides on quantum dots towards improving photostability. Chemical Science, 2019, 10, 6683-6688.	7.4	9
133	Lowâ€dimensional nanomaterial/Si heterostructureâ€based photodetectors. InformaÄnÃ-Materiály, 2019, 1, 140-163.	17.3	81
134	In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts. Nano-Micro Letters, 2019, 11, 47.	27.0	181
135	Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications. Advanced Functional Materials, 2019, 29, 1901236.	14.9	469
136	Stabilizing perovskite nanocrystals by controlling protective surface ligands density. Nano Research, 2019, 12, 1461-1465.	10.4	56
137	Nonlayered Two-Dimensional Defective Semiconductor γ-Ga ₂ S ₃ toward Broadband Photodetection. ACS Nano, 2019, 13, 6297-6307.	14.6	72
138	Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nature Energy, 2019, 4, 408-415.	39.5	831
139	A Thermodynamically Favored Crystal Orientation in Mixed Formamidinium/Methylammonium Perovskite for Efficient Solar Cells. Advanced Materials, 2019, 31, e1900390.	21.0	101
140	A Conjugated Copolymer of <i>N</i> â€Phenylâ€ <i>p</i> â€phenylenediamine and Pyrene as Promising Cathode for Rechargeable Lithium–Ion Batteries. Chemistry - an Asian Journal, 2019, 14, 2210-2214.	3.3	18
141	Doubly Coated, Organic–Inorganic Paraffin Phase Change Materials: Zinc Oxide Coating of Hermetically Encapsulated Paraffins. Advanced Materials Interfaces, 2019, 6, 1900368.	3.7	18
142	Templateâ€Free Construction of Selfâ€Supported Sb Prisms with Stable Sodium Storage. Advanced Energy Materials, 2019, 9, 1901096.	19.5	57
143	Emerging inâ€plane anisotropic twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 1, 54-73.	17.3	247
144	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides, Angewandte Chemie, 2019, 131, 6103-6108	2.0	69

#	Article	IF	CITATIONS
145	Bottom-level motion control for robotic fish to swim in groups: modeling and experiments. Bioinspiration and Biomimetics, 2019, 14, 046001.	2.9	16
146	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, 2019, 10, 1112.	12.8	185
147	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	39.5	977
148	Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides. Angewandte Chemie - International Edition, 2019, 58, 6042-6047.	13.8	226
149	Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption. Nano-Micro Letters, 2019, 11, 24.	27.0	421
150	Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48, 2518-2534.	38.1	483
151	Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Advanced Materials, 2019, 31, e1806296.	21.0	841
152	Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nature Communications, 2019, 10, 572.	12.8	254
153	A Flexible Microwave Shield with Tunable Frequencyâ€Transmission and Electromagnetic Compatibility. Advanced Functional Materials, 2019, 29, 1900163.	14.9	299
154	Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Applied Catalysis B: Environmental, 2019, 245, 290-301.	20.2	229
155	Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga ₂ In ₄ S ₉ toward Highâ€Performance UV Photodetection. Advanced Materials, 2019, 31, e1806306.	21.0	90
156	A Eu ³⁺ -Eu ²⁺ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265-270.	12.6	793
157	Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage. Nano Energy, 2019, 57, 711-717.	16.0	78
158	Equilibrium and Dynamic Absorption of Electrolyte Species in Cation/Anion Exchange Membranes of Vanadium Redox Flow Batteries. ChemSusChem, 2019, 12, 1076-1083.	6.8	15
159	Recent Progress on 2D Noble-Transition-Metal Dichalcogenides. , 2019, 29, 1904932.		1
160	2D GeP: An Unexploited Low‧ymmetry Semiconductor with Strong Inâ€Plane Anisotropy. Advanced Materials, 2018, 30, e1706771.	21.0	219
161	Graphene Oxideâ€Supported βâ€Tin Telluride Composite for Sodium―and Lithiumâ€Ion Battery Anodes. Energy Technology, 2018, 6, 127-133.	3.8	35
162	Toward a Highâ€Performance Allâ€Plastic Full Battery with a'Single Organic Polymer as Both Cathode and Anode. Advanced Energy Materials, 2018, 8, 1703509.	19.5	189

#	Article	IF	CITATIONS
163	Interlayer Coupling Induced Infrared Response in WS ₂ /MoS ₂ Heterostructures Enhanced by Surface Plasmon Resonance. Advanced Functional Materials, 2018, 28, 1800339.	14.9	114
164	Extremely low trap-state energy level perovskite solar cells passivated using NH2-POSS with improved efficiency and stability. Journal of Materials Chemistry A, 2018, 6, 6806-6814.	10.3	45
165	Postsynthesis Potassiumâ€Modification Method to Improve Stability of CsPbBr ₃ Perovskite Nanocrystals. Advanced Optical Materials, 2018, 6, 1701106.	7.3	95
166	Regulation of Breathing CuO Nanoarray Electrodes for Enhanced Electrochemical Sodium Storage. Advanced Functional Materials, 2018, 28, 1707179.	14.9	61
167	An Electrochemical Method for Monitoring the Acidity of Water for Fuel Cell and Environmental Applications. Energy Technology, 2018, 6, 94-99.	3.8	4
168	Operando Investigation of Mn ₃ O _{4+δ} Co-catalyst on Fe ₂ O ₃ Photoanode: Manganese-Valency-Determined Enhancement at Varied Potentials. ACS Applied Energy Materials, 2018, 1, 814-821.	5.1	21
169	Vanadium Oxide Thin Film Formation on Graphene Oxide by Microexplosive Decomposition of Ammonium Peroxovanadate and Its Application as a Sodium Ion Battery Anode. Langmuir, 2018, 34, 2741-2747.	3.5	20
170	Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Naâ€lon Batteries. Small, 2018, 14, e1703338.	10.0	86
171	Superexchange Effects on Oxygen Reduction Activity of Edgeâ€Sharing [Co <i>_x</i> Mn _{1â^²} <i>_x</i> O ₆] Octahedra in Spinel Oxide. Advanced Materials, 2018, 30, 1705407.	21.0	142
172	Tunneling Diode Based on WSe ₂ /SnS ₂ Heterostructure Incorporating High Detectivity and Responsivity. Advanced Materials, 2018, 30, 1703286.	21.0	293
173	Boosting Sodium Storage in TiO ₂ Nanotube Arrays through Surface Phosphorylation. Advanced Materials, 2018, 30, 1704337.	21.0	201
174	Selfâ€Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1800181.	14.9	86
175	A Voltageâ€Boosting Strategy Enabling a Lowâ€Frequency, Flexible Electromagnetic Wave Absorption Device. Advanced Materials, 2018, 30, e1706343.	21.0	691
176	From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts. Nano-Micro Letters, 2018, 10, 8.	27.0	73
177	Spinel Manganese Ferrites for Oxygen Electrocatalysis: Effect of Mn Valency and Occupation Site. Electrocatalysis, 2018, 9, 287-292.	3.0	38
178	A novel method for the sequential removal and separation of multiple heavy metals from wastewater. Journal of Hazardous Materials, 2018, 342, 617-624.	12.4	143
179	Synthesis of novel magnetic sulfur-doped Fe3O4 nanoparticles for efficient removal of Pb(II). Science China Chemistry, 2018, 61, 164-171.	8.2	10
180	Ultrathin Graphdiyne Nanosheets Grown Inâ€Situ on Copper Nanowires and Their Performance as Lithiumâ€lon Battery Anodes. Angewandte Chemie - International Edition, 2018, 57, 774-778.	13.8	257

#	Article	IF	CITATIONS
181	Selfâ€5upported 3D Array Electrodes for Sodium Microbatteries. Advanced Functional Materials, 2018, 28, 1704880.	14.9	108
182	Theoretical design and exploration of novel high energy density materials based on silicon. Journal of Energetic Materials, 2018, 36, 291-301.	2.0	4
183	Revealing the Dominant Chemistry for Oxygen Reduction Reaction on Small Oxide Nanoparticles. ACS Catalysis, 2018, 8, 673-677.	11.2	58
184	Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. Journal of the American Chemical Society, 2018, 140, 459-465.	13.7	327
185	Ultrathin Graphdiyne Nanosheets Grown Inâ€Situ on Copper Nanowires and Their Performance as Lithiumâ€lon Battery Anodes. Angewandte Chemie, 2018, 130, 782-786.	2.0	41
186	Low-temperature-processed inorganic perovskite solar cells <i>via</i> solvent engineering with enhanced mass transport. Journal of Materials Chemistry A, 2018, 6, 23602-23609.	10.3	67
187	Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Letters, 2018, 10, 75.	27.0	412
188	Highly Inâ€Plane Anisotropic 2D GeAs ₂ for Polarization‣ensitive Photodetection. Advanced Materials, 2018, 30, e1804541.	21.0	140
189	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	19.5	207
190	Insights into the synergistic effect of ammonium and phosphate-containing additives for a thermally stable vanadium redox flow battery electrolyte. Journal of Power Sources, 2018, 402, 75-81.	7.8	16
191	Metal–Oxygen Hybridization Determined Activity in Spinel-Based Oxygen Evolution Catalysts: A Case Study of ZnFe _{2–<i>x</i>} Cr _{<i>xx</i>} O ₄ . Chemistry of Materials, 2018, 30, 6839-6848.	6.7	65
192	Segregation induced order-disorder transition in Cu(Au) surface alloys. Acta Materialia, 2018, 154, 220-227.	7.9	11
193	Impact of Surface Area in Evaluation of Catalyst Activity. Joule, 2018, 2, 1024-1027.	24.0	258
194	An electron deficiency strategy for enhancing hydrogen evolution on CoP nano-electrocatalysts. Nano Energy, 2018, 50, 273-280.	16.0	89
195	2D Ternary Chalcogenides. Advanced Optical Materials, 2018, 6, 1800058.	7.3	114
196	Enlarged CoO Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Advanced Materials, 2018, 30, e1802912.	21.0	338
197	Efficient Moistureâ€Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif. Solar Rrl, 2018, 2, 1800069	5.8	13
198	Submillimeter 2D Bi ₂ Se ₃ Flakes toward Highâ€Performance Infrared Photodetection at Optical Communication Wavelength. Advanced Functional Materials, 2018, 28, 1802707.	14.9	149

#	Article	IF	CITATIONS
199	Boosting the performance of organic cathodes through structure tuning. Journal of Materials Chemistry A, 2018, 6, 12985-12991.	10.3	87
200	Rational Design of Amphiphilic Peptides and Its Effect on Antifouling Performance. Biomacromolecules, 2018, 19, 3620-3627.	5.4	15
201	The Comprehensive Understanding of as an Evaluation Parameter for Electrochemical Water Splitting. Small Methods, 2018, 2, 1800168.	8.6	180
202	Identifying Influential Parameters of Octahedrally Coordinated Cations in Spinel ZnMn _{<i>x</i>} Co _{2–<i>x</i>} O ₄ Oxides for the Oxidation Reaction. ACS Catalysis, 2018, 8, 8568-8577.	11.2	68
203	Boosting PEC performance of Si photoelectrodes by coupling bifunctional CuCo hybrid oxide cocatalysts. Nanotechnology, 2018, 29, 425703.	2.6	6
204	Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nature Communications, 2018, 9, 2793.	12.8	189
205	Effect of the Electronic Structure on the Stability of CdSe/CdS and CdSe/CdS/ZnS Quantum-Dot Phosphors Incorporated into a Silica/Alumina Monolith. ACS Applied Nano Materials, 2018, 1, 3086-3090.	5.0	9
206	Detection of Bacteria in Water with β-Galactosidase-Coated Magnetic Nanoparticles. SLAS Technology, 2018, 23, 624-630.	1.9	3
207	Postsynthesis Phase Transformation for CsPbBr ₃ /Rb ₄ PbBr ₆ Core/Shell Nanocrystals with Exceptional Photostability. ACS Applied Materials & Interfaces, 2018, 10, 23303-23310.	8.0	98
208	Degree of Geometric Tilting Determines the Activity of FeO ₆ Octahedra for Water Oxidation. Chemistry of Materials, 2018, 30, 4313-4320.	6.7	54
209	Photodetectors: Interlayer Coupling Induced Infrared Response in WS ₂ /MoS ₂ Heterostructures Enhanced by Surface Plasmon Resonance (Adv. Funct. Mater. 22/2018). Advanced Functional Materials, 2018, 28, 1870151.	14.9	2
210	Three-Dimensional Modeling of a Fin-Actuated Robotic Fish With Multimodal Swimming. IEEE/ASME Transactions on Mechatronics, 2018, 23, 1641-1652.	5.8	51
211	Electrochemical oxidation of C3 saturated alcohols on Co3O4 in alkaline. Electrochimica Acta, 2017, 228, 183-194.	5.2	45
212	Graphitic C 3 N 4 modified by Ni 2 P cocatalyst: An efficient, robust and low cost photocatalyst for visible-light-driven H 2 evolution from water. Chemical Engineering Journal, 2017, 315, 296-303.	12.7	184
213	Interface Polarization Strategy to Solve Electromagnetic Wave Interference Issue. ACS Applied Materials & Material	8.0	300
214	Morphology Evolution and Degradation of CsPbBr ₃ Nanocrystals under Blue Light-Emitting Diode Illumination. ACS Applied Materials & Interfaces, 2017, 9, 7249-7258.	8.0	314
215	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	21.0	525
216	Chemical Reduction of Intrinsic Defects in Thicker Heterojunction Planar Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606774.	21.0	318

#	Article	IF	CITATIONS
217	Ternary graphitic carbon nitride/red phosphorus/molybdenum disulfide heterostructure: An efficient and low cost photocatalyst for visible-light-driven H2 evolution from water. Carbon, 2017, 119, 56-61.	10.3	60
218	Tailored Au@TiO2 nanostructures for the plasmonic effect in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12034-12042.	10.3	64
219	Fewâ€Layered PtS ₂ Phototransistor on hâ€BN with High Gain. Advanced Functional Materials, 2017, 27, 1701011.	14.9	176
220	CsI Preâ€Intercalation in the Inorganic Framework for Efficient and Stable FA _{1â^'} <i>_x</i> Cs <i>_x</i> PbI ₃ (Cl) Perovskite Solar Cells. Small, 2017, 13, 1700484.	10.0	121
221	Novel Preparation of Nâ€Doped SnO ₂ Nanoparticles via Laserâ€Assisted Pyrolysis: Demonstration of Exceptional Lithium Storage Properties. Advanced Materials, 2017, 29, 1603286.	21.0	132
222	Phosphate tuned copper electrodeposition and promoted formic acid selectivity for carbon dioxide reduction. Journal of Materials Chemistry A, 2017, 5, 11905-11916.	10.3	46
223	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie, 2017, 129, 8246-8250.	2.0	153
224	Highly Luminescent and Ultrastable CsPbBr ₃ Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angewandte Chemie - International Edition, 2017, 56, 8134-8138.	13.8	355
225	Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. Journal of Catalysis, 2017, 352, 113-119.	6.2	35
226	Crystalline In–Sb–S framework for highly-performed lithium/sodium storage. Journal of Materials Chemistry A, 2017, 5, 14198-14205.	10.3	20
227	The intrinsic properties of FA _(1â^²x) MA _x PbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 8537-8544.	10.3	152
228	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	19.5	486
229	A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. Journal of Materials Chemistry C, 2017, 5, 491-512.	5.5	305
230	Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. Advanced Materials, 2017, 29, 1605607.	21.0	122
231	Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. Journal of Materials Chemistry A, 2017, 5, 3039-3068.	10.3	625
232	Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nature Communications, 2017, 8, 1138.	12.8	374
233	Solution-processed nitrogen-rich graphene-like holey conjugated polymer for efficient lithium ion storage. Nano Energy, 2017, 41, 117-127.	16.0	159
234	Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano, 2017, 11, 8804-8813.	14.6	48

#	Article	IF	CITATIONS
235	Strong In-Plane Anisotropies of Optical and Electrical Response in Layered Dimetal Chalcogenide. ACS Nano, 2017, 11, 10264-10272.	14.6	116
236	Evaluation of electrochemical performances of ZnFe ₂ O ₄ /γ-Fe ₂ O ₃ nanoparticles prepared by laser pyrolysis. New Journal of Chemistry, 2017, 41, 9236-9243.	2.8	16
237	Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An <i>in Situ</i> Soft X-ray Absorption Spectroscopy Study. Journal of Physical Chemistry C, 2017, 121, 17682-17692.	3.1	138
238	Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces. ACS Applied Materials &	8.0	33
239	Hierarchical SnO2-Graphite Nanocomposite Anode for Lithium-Ion Batteries through High Energy Mechanical Activation. Electrochimica Acta, 2017, 248, 440-448.	5.2	26
240	A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nanoâ€₽d Surface in Alkaline Media. Advanced Energy Materials, 2017, 7, 1701129.	19.5	108
241	Efficient removal of Pb(<scp>ii</scp>) from water using magnetic Fe ₃ S ₄ /reduced graphene oxide composites. Journal of Materials Chemistry A, 2017, 5, 19333-19342.	10.3	72
242	Tailoring the Co 3d-O 2p Covalency in LaCoO ₃ by Fe Substitution To Promote Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 10534-10541.	6.7	254
243	Ultrathin GaGeTe p-type transistors. Applied Physics Letters, 2017, 111, .	3.3	28
244	Encapsulating porous SnO ₂ into a hybrid nanocarbon matrix for long lifetime Li storage. Journal of Materials Chemistry A, 2017, 5, 25609-25617.	10.3	57
245	Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. Journal of Catalysis, 2017, 356, 14-21.	6.2	128
246	An amino-substituted perylene diimide polymer for conventional perovskite solar cells. Materials Chemistry Frontiers, 2017, 1, 2078-2084.	5.9	26
247	Exploring the backward swimming ability of a robotic fish. International Journal of Advanced Robotic Systems, 2016, 13, 172988141666948.	2.1	4
248	An Airâ€ S table Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600453.	19.5	167
249	The Progress of Interface Design in Perovskiteâ€Based Solar Cells. Advanced Energy Materials, 2016, 6, 1600460.	19.5	139
250	Lithium Storage: An Air-Stable Densely Packed Phosphorene-Graphene Composite Toward Advanced Lithium Storage Properties (Adv. Energy Mater. 12/2016). Advanced Energy Materials, 2016, 6, .	19.5	2
251	Synthesis of Europium Sulfides by CS2 Sulfurization and Heat Treatment. MRS Advances, 2016, 1, 3983-3988.	0.9	2

252 Gesture recognition based teleoperation framework of robotic fish. , 2016, , .

7

#	Article	IF	CITATIONS
253	Application of Taguchi Method in the Optimization of Swimming Capability for Robotic Fish. International Journal of Advanced Robotic Systems, 2016, 13, 102.	2.1	15
254	A novel quinone-based polymer electrode for high performance lithium-ion batteries. Science China Materials, 2016, 59, 6-11.	6.3	67
255	Interface Strategy To Achieve Tunable High Frequency Attenuation. ACS Applied Materials & Interfaces, 2016, 8, 6529-6538.	8.0	285
256	Improving the Performance of Lithium–Sulfur Batteries by Employing Polyimide Particles as Hosting Matrixes. ACS Applied Materials & Interfaces, 2016, 8, 7464-7470.	8.0	52
257	Densely-packed graphene/conducting polymer nanoparticle papers for high-volumetric-performance flexible all-solid-state supercapacitors. Applied Surface Science, 2016, 379, 206-212.	6.1	48
258	Enhancing the Stability of CH ₃ NH ₃ PbBr ₃ Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in "Waterless―Toluene. Journal of the American Chemical Society, 2016, 138, 5749-5752.	13.7	501
259	Electrochemical Cycling Induced Surface Segregation of AuPt Nanoparticles in HClO4and H2SO4. Journal of the Electrochemical Society, 2016, 163, F752-F760.	2.9	5
260	Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon, 2016, 110, 130-137.	10.3	149
261	Ternary Ta ₂ NiSe ₅ Flakes for a Highâ€Performance Infrared Photodetector. Advanced Functional Materials, 2016, 26, 8281-8289.	14.9	112
262	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	21.0	336
263	Optimized synthesis of CulnS ₂ /ZnS:Al–TiO ₂ nanocomposites for 1,3-dichloropropene photodegradation. RSC Advances, 2016, 6, 77777-77785.	3.6	6
264	Nano-hydroxyapatite as an Efficient Polysulfide Absorbent for High-performance Li-S Batteries. Electrochimica Acta, 2016, 215, 162-170.	5.2	12
265	Steamed water engineering mechanically robust graphene films for high-performance electrochemical capacitive energy storage. Nano Energy, 2016, 26, 668-676.	16.0	51
266	A Facile Synthesis of Size-Controllable IrO2 and RuO2 Nanoparticles for the Oxygen Evolution Reaction. Electrocatalysis, 2016, 7, 420-427.	3.0	57
267	Stable and Flexible CuInS ₂ /ZnS:Al-TiO ₂ Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS Applied Materials & Interfaces, 2016, 8, 20048-20056.	8.0	20
268	The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery. Journal of Power Sources, 2016, 334, 94-103.	7.8	26
269	Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 2016, 6, 19777.	3.3	115
270	Superior Sodium Storage in Na ₂ Ti ₃ O ₇ Nanotube Arrays through Surface Engineering. Advanced Energy Materials, 2016, 6, 1502568.	19.5	219

#	Article	IF	CITATIONS
271	Hydrogenation Driven Conductive Na ₂ Ti ₃ O ₇ Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. Nano Letters, 2016, 16, 4544-4551.	9.1	235
272	Activation Effect of Electrochemical Cycling on Gold Nanoparticles towards the Hydrogen Evolution Reaction in Sulfuric Acid. Electrochimica Acta, 2016, 209, 440-447.	5.2	32
273	Valence Change Ability and Geometrical Occupation of Substitution Cations Determine the Pseudocapacitance of Spinel Ferrite XFe ₂ O ₄ (X = Mn, Co, Ni, Fe). Chemistry of Materials, 2016, 28, 4129-4133.	6.7	98
274	Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability. ACS Applied Materials & Interfaces, 2016, 8, 16932-16938.	8.0	64
275	Ethylene Glycol and Ethanol Oxidation on Spinel Ni-Co Oxides in Alkaline. Journal of the Electrochemical Society, 2016, 163, H99-H104.	2.9	27
276	Nanocasting synthesis of Fe ₃ O ₄ @HTC nanocapsules and their superior electromagnetic properties. RSC Advances, 2016, 6, 20386-20391.	3.6	14
277	Smart Magnetic Nanosensors Synthesized through Layer-by-Layer Deposition of Molecular Beacons for Noninvasive and Longitudinal Monitoring of Cellular mRNA. ACS Applied Materials & Interfaces, 2016, 8, 5877-5886.	8.0	19
278	A general non-CH ₃ NH ₃ X (X = I, Br) one-step deposition of CH ₃ NH ₃ PbX ₃ perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3245-3248.	10.3	47
279	An electrochemical sensor highly selective for lindane determination: a comparative study using three different α-MnO ₂ nanostructures. RSC Advances, 2016, 6, 22973-22979.	3.6	13
280	Bimetallic Nanoparticles: Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering (Small 27/2015). Small, 2015, 11, 3198-3198.	10.0	0
281	Reserving Interior Void Space for Volume Change Accommodation: An Example of Cable‣ike MWNTs@SnO ₂ @C Composite for Superior Lithium and Sodium Storage. Advanced Science, 2015, 2, 1500097.	11.2	69
282	Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach. Scientific Reports, 2015, 5, 15227.	3.3	52
283	Facile Aluminum Reduction Synthesis of Blue TiO ₂ with Oxygen Deficiency for Lithium″on Batteries. Chemistry - A European Journal, 2015, 21, 18309-18315.	3.3	32
284	Polycrystalline zinc stannate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14033-14038.	10.3	53
285	Micro-force measuring apparatus for robotic fish: Design, implementation and application. , 2015, , .		4
286	Oxygen Reduction Activity and Stability Trends of Bimetallic Pt _{0.5} M _{0.5} Nanoparticle in Acid. Journal of Physical Chemistry C, 2015, 119, 3971-3978.	3.1	36
287	Angiopoietin-like 4 Increases Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia. Cell Reports, 2015, 10, 654-663.	6.4	59
288	Tuning emission and Stokes shift of CdS quantum dots via copper and indium co-doping. RSC Advances, 2015, 5, 628-634.	3.6	17

#	Article	IF	CITATIONS
289	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	13.8	594
290	A novel non-enzymatic lindane sensor based on CuO–MnO ₂ hierarchical nano-microstructures for enhanced sensitivity. Chemical Communications, 2015, 51, 4376-4379.	4.1	26
291	Composition dependence of methanol oxidation activity in nickel–cobalt hydroxides and oxides: an optimization toward highly active electrodes. Electrochimica Acta, 2015, 165, 56-66.	5.2	69
292	Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9353-9378.	10.3	413
293	Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water. ACS Catalysis, 2015, 5, 4115-4120.	11.2	90
294	β-Cyclodextrin stabilized magnetic Fe ₃ S ₄ nanoparticles for efficient removal of Pb(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 15755-15763.	10.3	92
295	β-FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 5340-5348.	6.7	57
296	Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. Journal of Power Sources, 2015, 294, 112-119.	7.8	99
297	Solid-state activation of Li ₂ O ₂ oxidation kinetics and implications for Li–O ₂ 2 batteries. Energy and Environmental Science, 2015, 8, 2417-2426.	30.8	68
298	Biochemistry-Enabled 3D Foams for Ultrafast Battery Cathodes. ACS Nano, 2015, 9, 4628-4635.	14.6	102
299	A new insight into electrochemical detection of eugenol by hierarchical sheaf-like mesoporous NiCo2O4. Nano Research, 2015, 8, 2636-2645.	10.4	40
300	Controlled synthesis of high-performance \hat{l}^2 -FeOOH anodes for lithium-ion batteries and their size effects. Nano Energy, 2015, 13, 397-404.	16.0	49
301	Yolk–shell Fe ₂ O ₃ ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage. Nanoscale, 2015, 7, 9520-9525.	5.6	67
302	Surface Segregation in Bimetallic Nanoparticles: A Critical Issue in Electrocatalyst Engineering. Small, 2015, 11, 3221-3246.	10.0	208
303	Free-standing functional graphene reinforced carbon films with excellent mechanical properties and superhydrophobic characteristic. Composites Part A: Applied Science and Manufacturing, 2015, 74, 96-106.	7.6	12
304	Micro-optical coherence tomography tracking of magnetic gene transfection via Au–Fe ₃ O ₄ dumbbell nanoparticles. Nanoscale, 2015, 7, 17249-17253.	5.6	19
305	Controlled one-step synthesis of Pt decorated octahedral Fe ₃ O ₄ and its excellent catalytic performance for CO oxidation. Nanoscale, 2015, 7, 17855-17860.	5.6	20
306	General Method for the Synthesis of Ultrastable Core/Shell Quantum Dots by Aluminum Doping. Journal of the American Chemical Society, 2015, 137, 12430-12433.	13.7	91

#	Article	IF	CITATIONS
307	Formation of Uniform Fe ₃ O ₄ Hollow Spheres Organized by Ultrathin Nanosheets and Their Excellent Lithium Storage Properties. Advanced Materials, 2015, 27, 4097-4101.	21.0	396
308	From fish scales to highly porous N-doped carbon: a low cost material solution for CO ₂ capture. RSC Advances, 2015, 5, 88171-88175.	3.6	23
309	CaF ₂ -Based Near-Infrared Photocatalyst Using the Multifunctional CaTiO ₃ Precursors as the Calcium Source. ACS Applied Materials & Interfaces, 2015, 7, 20170-20178.	8.0	33
310	Fe2O3 Nanoparticle/SWCNT Composite Electrode for Sensitive Electrocatalytic Oxidation of Hydroquinone. Electrochimica Acta, 2015, 180, 1059-1067.	5.2	43
311	Magnetic Biochar Decorated with ZnS Nanocrytals for Pb (II) Removal. ACS Sustainable Chemistry and Engineering, 2015, 3, 125-132.	6.7	180
312	Synthesis, properties and applications of one- and two-dimensional gold nanostructures. Nano Research, 2015, 8, 40-55.	10.4	97
313	Facile synthesis and electrochemical properties of Fe3O4 hexahedra for Li-ion battery anode. Materials Letters, 2015, 141, 319-322.	2.6	16
314	Fe/N/C hollow nanospheres by Fe(<scp>iii</scp>)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 1501-1509.	5.6	242
315	Superior Lithium Storage Properties of βâ€FeOOH. Advanced Energy Materials, 2015, 5, 1401517.	19.5	56
316	Vertically oriented MoS ₂ and WS ₂ nanosheets directly grown on carbon cloth as efficient and stable 3-dimensional hydrogen-evolving cathodes. Journal of Materials Chemistry A, 2015, 3, 131-135.	10.3	254
317	Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. Journal of Power Sources, 2015, 274, 755-761.	7.8	114
318	Preparation of Thermo-Sensitive Magnetic Cationic Hydrogel for the Adsorption of Reactive Red Dye. Journal of Dispersion Science and Technology, 2015, 36, 714-722.	2.4	5
319	Digital implementation of CPG controller in AVR system. , 2014, , .		4
320	Optimization of Zn _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Hollow Spheres for Enhanced Microwave Attenuation. ACS Applied Materials & Interfaces, 2014, 6, 21911-21915.	8.0	71
321	Aqueous-Based Chemical Route toward Ambient Preparation of Multicomponent Core–Shell Nanotubes. ACS Nano, 2014, 8, 4004-4014.	14.6	37
322	Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catalysis, 2014, 4, 1693-1705.	11.2	769
323	Bioinspired Multifunctional Vanadium Dioxide: Improved Thermochromism and Hydrophobicity. Langmuir, 2014, 30, 10766-10771.	3.5	131
324	Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction. Chemical Communications, 2014, 50, 7885.	4.1	113

#	Article	IF	CITATIONS
325	Achieving high performance electromagnetic wave attenuation: a rational design of silica coated mesoporous iron microcubes. Journal of Materials Chemistry C, 2014, 2, 7583.	5.5	75
326	Exchangeâ€Coupled fctâ€FePd/αâ€Fe Nanocomposite Magnets Converted from Pd/Fe ₃ O ₄ Core/Shell Nanoparticles. Chemistry - A European Journal, 2014, 20, 15197-15202.	3.3	18
327	High-performance hybrid electrochemical capacitor with binder-free Nb ₂ O ₅ @graphene. RSC Advances, 2014, 4, 37389.	3.6	71
328	Hybrid catalysts for photoelectrochemical reduction of carbon dioxide: a prospective review on semiconductor/metal complex co-catalyst systems. Journal of Materials Chemistry A, 2014, 2, 15228.	10.3	108
329	High-surface-area mesoporous TiO ₂ microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage. Nanoscale, 2014, 6, 14926-14931.	5.6	25
330	A comparison of carbon supports in MnO ₂ /C supercapacitors. RSC Advances, 2014, 4, 31416.	3.6	22
331	Encapsulating MWNTs into Hollow Porous Carbon Nanotubes: A Tubeâ€inâ€Tube Carbon Nanostructure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Materials, 2014, 26, 5113-5118.	21.0	360
332	Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 2014, 23, 037503.	1.4	145
333	Surface Composition Tuning of Au–Pt Bimetallic Nanoparticles for Enhanced Carbon Monoxide and Methanol Electro-oxidation. Journal of the American Chemical Society, 2013, 135, 7985-7991.	13.7	266
334	CPG-based locomotion control of a quadruped amphibious robot. , 2012, , .		3
335	Compositional dependence of the stability of AuCu alloy nanoparticles. Chemical Communications, 2012, 48, 5626.	4.1	153
336	Experimental and theoretical studies on the oneâ€photon and twoâ€photon properties of a series of carbazole derivatives containing styrene. Journal of Physical Organic Chemistry, 2012, 25, 362-372.	1.9	19
337	A facile fabrication of Cu2O nanowire arrays on Cu substrates. Open Engineering, 2012, 2, .	1.6	5
338	Nanoengineered PtCo and PtNi Catalysts for Oxygen Reduction Reaction: An Assessment of the Structural and Electrocatalytic Properties. Journal of Physical Chemistry C, 2011, 115, 1682-1694.	3.1	173
339	Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios. Chinese Physics B, 2011, 20, 076103.	1.4	13
340	Synthesis and properties of Au–Fe ₃ O ₄ and Ag–Fe ₃ O ₄ heterodimeric nanoparticles. Chinese Physics B, 2010, 19, 066102.	1.4	10
341	Variability and reduction of atmospheric pollutants in Beijing and its surrounding area during the Beijing 2008 Olympic Games. Science Bulletin, 2010, 55, 1937-1944.	1.7	70
342	Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 2010, 22, 2729-2742.	21.0	1,260

#	Article	IF	CITATIONS
343	Synthesis of monodisperse palladium nanocubes and their catalytic activity for methanol electrooxidation. Chinese Physics B, 2010, 19, 106104.	1.4	33
344	Pulsed electrodeposition and unique properties of one-dimensional Bi-based nanostructures in porous alumina membranes. Pure and Applied Chemistry, 2010, 82, 2075-2095.	1.9	3
345	Platinumâ^'Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithiumâ^'Air Batteries. Journal of the American Chemical Society, 2010, 132, 12170-12171.	13.7	1,171
346	Direct Colloidal Route for Pt-Covered AuPt Bimetallic Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 2514-2518.	4.6	41
347	One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications. Nanoscale, 2010, 2, 1375.	5.6	71
348	Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale, 2010, 2, 1027.	5.6	92
349	One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46, 3920.	4.1	140
350	Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009, 21, 1778-1780.	6.7	503
351	Growth of Au Nanowires at the Interface of Air/Water. Journal of Physical Chemistry C, 2009, 113, 15196-15200.	3.1	7
352	Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions. Advanced Materials, 2008, 20, 4342-4347.	21.0	231
353	Fuel cell technology: nano-engineered multimetallic catalysts. Energy and Environmental Science, 2008, 1, 454.	30.8	144
354	Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays. Journal of Physical Chemistry C, 2008, 112, 1468-1472.	3.1	73
355	Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. Journal of the American Chemical Society, 2007, 129, 8698-8699.	13.7	853
356	Wet chemical synthesis of gold nanoparticles using silver seeds: a shape control from nanorods to hollow spherical nanoparticles. Nanotechnology, 2007, 18, 115608.	2.6	54
357	Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 6329-6332.	13.8	266
358	A Facile Synthesis of SmCo ₅ Magnets from Core/Shell Co/Sm ₂ O ₃ Nanoparticles. Advanced Materials, 2007, 19, 3349-3352.	21.0	157
359	Synthesis, characterization and self-assemblies of magnetite nanoparticles. Surface and Interface Analysis, 2006, 38, 1063-1067.	1.8	19
360	Fabrication of gold nanorod self-assemblies from rod and sphere mixtures via shape self-selective behavior. Chemical Physics Letters, 2006, 432, 222-225.	2.6	29

#	Article	IF	CITATIONS
361	Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe3O4) Nanoparticles via Trichloro-s-triazine. Chemistry of Materials, 2006, 18, 5401-5403.	6.7	185
362	Zinc ions surface-doped titanium dioxide nanotubes and its photocatalysis activity for degradation of methyl orange in water. Journal of Molecular Catalysis A, 2005, 226, 123-127.	4.8	160
363	Coiled carbon nanotubes growth and DSC study in epoxy-based composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 257-258, 339-343.	4.7	19
364	From aqueous to organic: A step-by-step strategy for shape evolution of gold nanoparticles. Chemical Physics Letters, 2005, 415, 342-345.	2.6	11
365	Titanium dioxide doped polyaniline. Materials Science and Engineering C, 2005, 25, 444-447.	7.3	147
366	Morphologies and microstructures of nano-sized Cu2O particles using a cetyltrimethylammonium template. Nanotechnology, 2005, 16, 267-272.	2.6	63
367	Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. Journal of Physical Chemistry B, 2005, 109, 23233-23236.	2.6	225
368	Doping metal ions only onto the catalyst surface. Journal of Molecular Catalysis A, 2004, 219, 351-355.	4.8	64
369	Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon, 2003, 41, 2731-2736.	10.3	302
370	Designing PEDOT-modified V6O13 nanosheet arrays for sodium storage. Functional Materials Letters, 0, , 2143001.	1.2	4
371	SmCo5 with a reconstructed oxyhydroxide surface for spin selective water oxidation under elevated temperature. Angewandte Chemie. 0	2.0	2