List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1314870/publications.pdf Version: 2024-02-01

LEENA HUDA

#	Article	IF	CITATIONS
1	Bioglass and Bioactive Glasses and Their Impact on Healthcare. International Journal of Applied Glass Science, 2016, 7, 423-434.	2.0	226
2	Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. Journal of Materials Science: Materials in Medicine, 2008, 19, 27-32.	3.6	217
3	Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria inÂvitro. Journal of Materials Science: Materials in Medicine, 2008, 19, 547-551.	3.6	169
4	Antibacterial effects and dissolution behavior of six bioactive glasses. Journal of Biomedical Materials Research - Part A, 2010, 93A, 475-483.	4.0	153
5	Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta Biomaterialia, 2016, 46, 286-298.	8.3	151
6	Bioactive dental materials—Do they exist and what does bioactivity mean?. Dental Materials, 2018, 34, 693-694.	3.5	126
7	Crystallization Mechanism of the Bioactive Glasses, 45S5 and S53P4. Journal of the American Ceramic Society, 2012, 95, 607-613.	3.8	119
8	Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Acta Biomaterialia, 2012, 8, 792-801.	8.3	117
9	Improving urban mining practices for optimal recovery of resources from e-waste. Minerals Engineering, 2017, 111, 209-221.	4.3	101
10	In situ pH within particle beds of bioactive glasses. Acta Biomaterialia, 2008, 4, 1498-1505.	8.3	84
11	Fiber glass–bioactive glass composite for bone replacing and bone anchoring implants. Dental Materials, 2015, 31, 371-381.	3.5	79
12	Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume. Journal of Materials Chemistry B, 2016, 4, 3121-3134.	5.8	79
13	Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomaterialia, 2015, 21, 190-203.	8.3	76
14	Factors affecting crystallization of bioactive glasses. Journal of the European Ceramic Society, 2007, 27, 1543-1546.	5.7	71
15	Influence of SrO substitution for CaO on the properties of bioactive glass S53P4. Journal of Materials Science: Materials in Medicine, 2014, 25, 657-668.	3.6	71
16	Surface reactions of bioactive glasses in buffered solutions. Journal of the European Ceramic Society, 2012, 32, 2757-2763.	5.7	69
17	Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer. Acta Biomaterialia, 2013, 9, 5400-5410.	8.3	62
18	Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4. Journal of Non-Crystalline Solids, 2012, 358, 2701-2707.	3.1	59

#	Article	IF	CITATIONS
19	Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions. Journal of Non-Crystalline Solids, 2018, 502, 22-34.	3.1	56
20	Influence of heat treatment on crystallization of bioactive glasses. Journal of Non-Crystalline Solids, 2008, 354, 722-728.	3.1	55
21	Chemical resistance and cleanability of glazed surfaces. Surface Science, 2005, 584, 113-118.	1.9	54
22	Ion Release, Hydroxyapatite Conversion, and Cytotoxicity of Boronâ€Containing Bioactive Glass Scaffolds. International Journal of Applied Glass Science, 2016, 7, 206-215.	2.0	48
23	Microstructure and cleanability of uncoated and fluoropolymer, zirconia and titania coated ceramic glazed surfaces. Journal of the European Ceramic Society, 2007, 27, 101-108.	5.7	46
24	Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4. Acta Biomaterialia, 2012, 8, 2331-2339.	8.3	46
25	Processing and characterization of novel borophosphate glasses and fibers for medical applications. Journal of Non-Crystalline Solids, 2015, 425, 52-60.	3.1	45
26	Impact of gastric acidic challenge on surface topography and optical properties of monolithic zirconia. Dental Materials, 2015, 31, 1445-1452.	3.5	45
27	Comparison of self-cleaning properties of three titania coatings on float glass. Applied Surface Science, 2011, 258, 1126-1131.	6.1	44
28	Influence of firing parameters on phase composition of raw glazes. Journal of the European Ceramic Society, 2007, 27, 1671-1675.	5.7	41
29	T–T–T behaviour of bioactive glasses 1–98 and 13–93. Journal of the European Ceramic Society, 2012, 3 2731-2738.	2, 5.7	39
30	Dissolution Kinetics of a Bioactive Glass by Continuous Measurement. Journal of the American Ceramic Society, 2012, 95, 3130-3137.	3.8	39
31	Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses. Journal of Materials Science: Materials in Medicine, 2013, 24, 1407-1416.	3.6	39
32	A glass fiber-reinforced composite – bioactive glass cranioplasty implant: A case study of an early development stage implant removed due to a late infection. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 191-200.	3.1	39
33	Multi-layer porous fiber-reinforced composites for implants: In vitro calcium phosphate formation in the presence of bioactive glass. Dental Materials, 2012, 28, 1134-1145.	3.5	38
34	Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts. Energy, 2018, 148, 930-940.	8.8	38
35	Effect of the Preparation of Pt-Modified Zeolite Beta-Bentonite Extrudates on Their Catalytic Behavior in n-Hexane Hydroisomerization. Industrial & Engineering Chemistry Research, 2019, 58, 10875-10885.	3.7	38
36	Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Materials Science and Engineering C, 2019, 99, 905-918.	7.3	38

#	Article	IF	CITATIONS
37	Ash melting behaviour of wheat straw blends with wood and reed. Renewable Energy, 2018, 124, 11-20.	8.9	37
38	Bioactive Glass (BG) ICIE16 Shows Promising Osteogenic Properties Compared to Crystallized 45S5-BG. International Journal of Molecular Sciences, 2020, 21, 1639.	4.1	37
39	Influence of fluid circulation on in vitro reactivity of bioactive glass particles. Materials Chemistry and Physics, 2008, 111, 497-502.	4.0	36
40	Chemical durability of glazed surfaces. Journal of the European Ceramic Society, 2007, 27, 1811-1816.	5.7	35
41	Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions. Journal of Physics and Chemistry of Solids, 2013, 74, 121-127.	4.0	35
42	Chemical resistance and cleaning properties of coated glazed surfaces. Journal of the European Ceramic Society, 2009, 29, 1855-1860.	5.7	34
43	Potassium Ash Interactions with Oxygen Carriers Steel Converter Slag and Iron Mill Scale in Chemical-Looping Combustion of Biomass—Experimental Evaluation Using Model Compounds. Energy & Fuels, 2020, 34, 2304-2314.	5.1	34
44	Bioactivity and dissolution behavior of boron-containing bioactive glasses under static and dynamic conditions in different media. Biomedical Glasses, 2019, 5, 124-139.	2.4	33
45	Dissolution behavior of the bioactive glass S53P4 when sodium is replaced by potassium, and calcium with magnesium or strontium. Journal of Non-Crystalline Solids, 2016, 432, 41-46.	3.1	32
46	Effect of coating on cleanability of glazed surfaces. Journal of the European Ceramic Society, 2007, 27, 4555-4560.	5.7	31
47	Mechanical verification of soft-tissue attachment on bioactive glasses and titanium implants. Acta Biomaterialia, 2008, 4, 1118-1122.	8.3	31
48	Synthesis and Physicochemical Characterization of Shaped Catalysts of Î ² and Y Zeolites for Cyclization of Citronellal. Industrial & Engineering Chemistry Research, 2019, 58, 18084-18096.	3.7	31
49	Control of the thermal properties of slow bioresorbable glasses by boron addition. Journal of Non-Crystalline Solids, 2011, 357, 3623-3630.	3.1	30
50	Corrosion of the crystalline phases of matte glazes in aqueous solutions. Journal of the European Ceramic Society, 2009, 29, 7-14.	5.7	29
51	Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticles. Journal of the European Ceramic Society, 2015, 35, 3863-3871.	5.7	28
52	Effect of Binders on the Physicochemical and Catalytic Properties of Extrudate-Shaped Beta Zeolite Catalysts for Cyclization of Citronellal. Organic Process Research and Development, 2019, 23, 2456-2463.	2.7	28
53	Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles. Journal of the European Ceramic Society, 2007, 27, 4569-4574.	5.7	27
54	Phosphate-based glass fiber vs. bulk glass: Change in fiber optical response to probe in vitro glass reactivity. Materials Science and Engineering C, 2014, 37, 251-257.	7.3	27

#	Article	IF	CITATIONS
55	Effect of soaking time on phase composition and topography and surface microstructure in vitrocrystalline whiteware glazes. Journal of the European Ceramic Society, 2009, 29, 2153-2161.	5.7	26
56	New alternative route for the preparation of phosphate glasses with persistent luminescence properties. Journal of the European Ceramic Society, 2015, 35, 1255-1261.	5.7	25
57	Porous SiO2 nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant. Materials Science and Engineering C, 2016, 62, 206-214.	7.3	25
58	3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomaterials Science and Engineering, 2019, 5, 4496-4510.	5.2	25
59	A review of acellular immersion tests on bioactive glasses––influence of medium on ion release and apatite formation. International Journal of Applied Glass Science, 2020, 11, 537-551.	2.0	25
60	Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material. Journal of Materials Science: Materials in Medicine, 2013, 24, 1217-1227.	3.6	24
61	Dissolution and mineralization characterization of bioactive glass ceramic containing endodontic sealer Guttaflow Bioseal. Dental Materials Journal, 2018, 37, 988-994.	1.8	24
62	High temperature slagging gasification of municipal solid waste with biomass charcoal as a greener auxiliary fuel. Journal of Hazardous Materials, 2022, 423, 127057.	12.4	24
63	Energy conversion of biomass char: Oxidation rates in mixtures of O2/CO2/H2O. Energy, 2019, 181, 615-624.	8.8	23
64	Understanding the Interaction of Potassium Salts with an Ilmenite Oxygen Carrier Under Dry and Wet Conditions. ACS Omega, 2020, 5, 22966-22977.	3.5	23
65	Bioactive composite for keratoprosthesis skirt. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1700-1708.	3.1	22
66	Dissolution of Bioactive Glasses in Acidic Solutions with the Focus on Lactic Acid. International Journal of Applied Glass Science, 2016, 7, 154-163.	2.0	22
67	Factors Controlling Antibacterial Properties of Bioactive Glasses. Key Engineering Materials, 2007, 330-332, 173-176.	0.4	21
68	Hygroscopic Properties of Calcium Chloride and Its Role on Cold-End Corrosion in Biomass Combustion. Energy & Fuels, 2019, 33, 11913-11922.	5.1	20
69	Injectable thiol-ene hydrogel of galactoglucomannan and cellulose nanocrystals in delivery of therapeutic inorganic ions with embedded bioactive glass nanoparticles. Carbohydrate Polymers, 2022, 276, 118780.	10.2	20
70	Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH. Biomedical Glasses, 2015, 1, .	2.4	19
71	Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique. Catalysis Today, 2022, 383, 64-73.	4.4	19
72	In vitro behaviour of three biocompatible glasses in composite implants. Journal of Materials Science: Materials in Medicine, 2012, 23, 2425-2435.	3.6	18

#	Article	IF	CITATIONS
73	<scp><i>Inâ€vitro</i></scp> Degradation and Bioactivity of Tailored Amorphous Multi Porous Scaffold Structure. Journal of the American Ceramic Society, 2012, 95, 2687-2694.	3.8	18
74	Influence of P2O5 and Al2O3 content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties. Materials Research Bulletin, 2015, 63, 41-50.	5.2	18
75	Synthesis of menthol from citronellal over supported Ru- and Pt-catalysts in continuous flow. Reaction Chemistry and Engineering, 2019, 4, 2156-2169.	3.7	18
76	On-line microcolumn-based dynamic leaching method for investigation of lead bioaccessibility in shooting range soils. Chemosphere, 2020, 256, 127022.	8.2	18
77	Influence of the replacement of silica by boron trioxide on the properties of bioactive glass scaffolds. International Journal of Applied Glass Science, 2021, 12, 293-312.	2.0	18
78	Soil-resistant surfaces for traditional ceramics. Journal of the European Ceramic Society, 2007, 27, 1775-1780.	5.7	17
79	Impact of sodium salts on agglomeration in a laboratory fluidized bed. Fuel, 2019, 245, 305-315.	6.4	17
80	Bone morphogenic protein expression and bone formation are induced by bioactive glass S53P4 scaffolds <i>in vivo</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 847-857.	3.4	17
81	Topographic characterization of glazed surfaces. Applied Surface Science, 2008, 254, 1622-1629.	6.1	16
82	Effect of CeO2 doping on thermal, optical, structural and in vitro properties of a phosphate based bioactive glass. Journal of Non-Crystalline Solids, 2014, 402, 28-35.	3.1	16
83	Determination of the thermodynamic properties of the Ag2CdSn3S8 and Ag2CdSnS4 phases in the Ag–Cd–Sn–S system by the solid-state electrochemical cell method. Journal of Chemical Thermodynamics, 2018, 118, 255-262.	2.0	16
84	Initial oxidation mechanisms of stainless steel Sanicro 28 (35Fe27Cr31Ni) exposed to KCl, NaCl, and K2CO3 under dry and humid conditions at 535 °C. Corrosion Science, 2019, 155, 29-45.	6.6	16
85	Sodium-free mixed alkali bioactive glasses. Biomedical Glasses, 2016, 2, .	2.4	14
86	A process for producing lignin and volatile compounds from hydrolysis liquor. Biotechnology for Biofuels, 2017, 10, 47.	6.2	14
87	Do properties of bioactive glasses exhibit mixed alkali behavior?. Journal of Materials Science, 2017, 52, 8986-8997.	3.7	14
88	Interaction of High Al ₂ O ₃ Refractories with Alkaline Salts Containing Potassium and Sodium in Biomass and Waste Combustion. Energy & Fuels, 2018, 32, 12971-12980.	5.1	14
89	Fast Pyrolysis of Dried Sugar Cane Vinasse at 400 and 500 °C: Product Distribution and Yield. Energy & Fuels, 2019, 33, 1236-1247.	5.1	14
90	Measuring the Devitrification of Bioactive Glasses. Key Engineering Materials, 2004, 254-256, 67-70.	0.4	13

#	Article	IF	CITATIONS
91	In Vitro Reactivity of Bioactive Glass Fibers. Advances in Science and Technology, 2006, 49, 246.	0.2	13
92	Effect of Mechanical and Chemical Wear on Soil Attachment and Cleanability of Sanitary Ware with Additional Coatings. Journal of the American Ceramic Society, 2011, 94, 951-958.	3.8	13
93	Continuous Measurement of the Dissolution Rate of Ions from Glasses. Advanced Materials Research, 2008, 39-40, 341-346.	0.3	12
94	Liquidus Temperatures of Bioactive Glasses. Advanced Materials Research, 0, 39-40, 287-292.	0.3	12
95	Effect of the glass melting condition on the processing of phosphate-based glass–ceramics with persistent luminescence properties. Optical Materials, 2016, 52, 56-61.	3.6	12
96	High-Temperature Corrosion of Refractory Materials in Biomass and Waste Combustion: Method Development and Tests with Alumina Refractory Exposed to a K ₂ CO ₃ –KCl Mixture. Energy & Fuels, 2017, 31, 10046-10054.	5.1	12
97	Melting behaviour of raw glazes. Journal of the European Ceramic Society, 2019, 39, 4404-4416.	5.7	12
98	Agglomeration tendency of a fluidized bed during addition of different phosphate compounds. Fuel, 2020, 268, 117300.	6.4	12
99	Impact of boiler load and limestone addition on SO3 and corrosive cold-end deposits in a coal-fired CFB boiler. Fuel, 2021, 304, 121313.	6.4	12
100	Durability of Mat Glazes in Hydrochloric Acid Solution. Key Engineering Materials, 2004, 264-268, 1565-1568.	0.4	11
101	In vitro blood and fibroblast responses to BisGMA–TEGDMA/bioactive glass composite implants. Journal of Materials Science: Materials in Medicine, 2014, 25, 151-162.	3.6	11
102	Antibacterial properties of bioactive glass particle abraded titanium against <i>Streptococcus mutans</i> . Biomedical Physics and Engineering Express, 2018, 4, 045002.	1.2	11
103	Low Mg or Zn substitution for improved thermal properties of Bioglass 45S5. Materials Letters, 2019, 256, 126599.	2.6	11
104	Bioactive glass ions for <i>in vitro</i> osteogenesis and microvascularization in gellan gumâ€collagen hydrogels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1332-1342.	3.4	11
105	The physicochemical and catalytic properties of clay extrudates in cyclization of citronellal. Applied Catalysis A: General, 2021, , 118426.	4.3	11
106	Citral-to-Menthol Transformations in a Continuous Reactor over Ni/Mesoporous Aluminosilicate Extrudates Containing a Sepiolite Clay Binder. Organic Process Research and Development, 2022, 26, 387-403.	2.7	11
107	Thirty-five years of guided tissue engineering. Journal of Non-Crystalline Solids, 2008, 354, 717-721.	3.1	10
108	Investigation of the K-Mg-Ca Sulfate System as Part of Monitoring Problematic Phase Formations in Renewable-Energy Power Plants. Energies, 2020, 13, 5366.	3.1	10

LEENA HUPA

#	Article	IF	CITATIONS
109	Development of nano-porous hydroxyapatite coated e-glass for potential bone-tissue engineering application: An in vitro approach. Materials Science and Engineering C, 2020, 111, 110764.	7.3	10
110	Effect of partial crystallization on the thermal, optical, structural and Er3+ luminescence properties of silicate glasses. Materials Chemistry and Physics, 2014, 147, 1099-1109.	4.0	9
111	Phase Equilibria and Thermodynamics of Selected Compounds in the Ag–Fe–Sn–S System. Journal of Electronic Materials, 2018, 47, 5433-5442.	2.2	9
112	Application of bipolar electrochemistry to accelerate dew point corrosion for screening of steel materials for power boilers. Fuel, 2020, 265, 116886.	6.4	9
113	Effect of bioactive glass airâ€abrasion on the wettability and osteoblast proliferation on sandblasted and acidâ€etched titanium surfaces. European Journal of Oral Sciences, 2020, 128, 160-169.	1.5	9
114	Behaviour of different bioactive glasses incorporated in polydimethylsiloxane endodontic sealer. Dental Materials, 2021, 37, 321-327.	3.5	9
115	Structural and elemental characterization of glass and ceramic particles for bone surgery. Dental Materials, 2021, 37, 1350-1357.	3.5	9
116	Er3+–Al2O3 nanoparticles doping of borosilicate glass. Bulletin of Materials Science, 2015, 38, 1407-1410.	1.7	8
117	Hierarchically Designed Bioactive Glassy Nanocoatings for the Growth of Faster and Uniformly Dense Apatite. Journal of the American Ceramic Society, 2015, 98, 2428-2437.	3.8	8
118	The Effect of Temperature on the Formation of Oxide Scales Regarding Commercial Superheater Steels. Oxidation of Metals, 2018, 89, 251-278.	2.1	8
119	Characterization of Vinasse for Thermochemical Conversion—Fuel Fractionation, Release of Inorganics, and Ash-Melting Behavior. Energy & Fuels, 2019, 33, 5840-5848.	5.1	8
120	The impact of wollastonite and dolomite on chemical durability of matte fast-fired raw glazes. Journal of the European Ceramic Society, 2020, 40, 3327-3337.	5.7	8
121	<i>In vitro</i> dissolution of bioactive glass S53P4 microspheres. Journal of the American Ceramic Society, 2022, 105, 1658-1670.	3.8	8
122	Thermal Conversion Characteristics of Molasses. ACS Omega, 2021, 6, 21631-21645.	3.5	8
123	Chapter 1. Melt-derived Bioactive Silicate Glasses. RSC Smart Materials, 0, , 1-26.	0.1	8
124	Bioactive Glass Compositions Suitable for Repeated Heat-Treatments. Key Engineering Materials, 2005, 284-286, 925-928.	0.4	7
125	Corrosion of Glazes Coated with Functional Films in Detergent Solutions. Advances in Science and Technology, 2006, 45, 156-161.	0.2	7
126	Three Megapixel Ultrasonic Microscope Imaging. , 2019, , .		7

126 Three Megapixel Ultrasonic Microscope Imaging. , 2019, , .

#	Article	IF	CITATIONS
127	S53P4 Bioactive Glass Inorganic Ions for Vascularized Bone Tissue Engineering by Dental Pulp Pluripotent-Like Stem Cell Cocultures. Tissue Engineering - Part A, 2019, 25, 1213-1224.	3.1	7
128	In vitro dissolution and characterisation of flame-sprayed bioactive glass microspheres S53P4 and 13–93. Journal of Non-Crystalline Solids, 2022, 591, 121736.	3.1	7
129	Porous Bioactive Glasses with Controlled Mechanical Strength. Key Engineering Materials, 2004, 254-256, 973-976.	0.4	6
130	Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties. Materials Research Bulletin, 2015, 70, 47-54.	5.2	6
131	Characterization of waste bio-oil as an alternate source of renewable fuel for marine engines. Biofuels, 2019, , 1-10.	2.4	6
132	Factors Affecting the Corrosive Behavior of Used Cooking Oils and a Non-Edible Fish Oil That Are in Contact with Ferrous Metals. Energies, 2019, 12, 4812.	3.1	6
133	The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System. Energies, 2021, 14, 1314.	3.1	6
134	Effect of local ion concentrations on the in vitro reactions of bioactive glass 45S5 particles. International Journal of Applied Glass Science, 2022, 13, 695-707.	2.0	6
135	The effect of fibrin sealant on bioactive glass S53P4 particles – pH impact and dissolution characteristics inÂvitro. Journal of Science: Advanced Materials and Devices, 2016, 1, 482-487.	3.1	5
136	Effect of partial crystallization on the structural and Er 3+ luminescence properties of phosphate-based glasses. Optical Materials, 2017, 64, 230-238.	3.6	5
137	Air Abrasion with Bioactive Class Eradicates <i>Streptococcus mutans</i> Biofilm from a Sandblasted and Acid-Etched Titanium Surface. Journal of Oral Implantology, 2019, 45, 444-450.	1.0	5
138	Effect of bioactive glass airâ€abrasion on <i>Fusobacterium nucleatum</i> and <i>Porphyromonas gingivalis</i> biofilm formed on moderately rough titanium surface. European Journal of Oral Sciences, 2021, 129, e12783.	1.5	5
139	Dissolution of Amorphous S53P4 Glass Scaffolds in Dynamic In Vitro Conditions. Materials, 2021, 14, 4834.	2.9	5
140	Alumina ceramic foams as catalyst supports. Catalysis, 0, , 28-50.	1.0	5
141	Corrosion of Heat Transfer Materials by Potassium-Contaminated Ilmenite Bed Particles in Chemical-Looping Combustion of Biomass. Energies, 2022, 15, 2740.	3.1	5
142	In Vitro Characterization of Bioactive Glasses. Key Engineering Materials, 2005, 284-286, 481-484.	0.4	4
143	In Vitro Behavior of Fiber Bundles and Particles of Bioactive Glasses. Key Engineering Materials, 2007, 361-363, 225-228.	0.4	4
144	Thermal and structural characterization of erbium-doped borosilicate fibers with low silica content containing various amounts of P2O5 and Al2O3. Optical Materials, 2014, 37, 87-92.	3.6	4

#	Article	IF	CITATIONS
145	Pre-oxidation as a Means to Increase Corrosion Resistance of Commercial Superheater Steels. Oxidation of Metals, 2019, 91, 311-326.	2.1	4
146	Deactivation and regeneration of Ptâ€modified zeolite Beta–Bindzil extrudates in n â€hexane hydroisomerization. Journal of Chemical Technology and Biotechnology, 2021, 96, 1645-1655.	3.2	4
147	Laboratory Study of Corrosion of an Alumina Refractory by Molten Potassium Salts. Advances in Science and Technology, 0, , .	0.2	3
148	Easy-to-Clean Coatings on Glass and Glazed Surfaces. Advances in Science and Technology, 0, , .	0.2	3
149	Thermodynamic Properties of Magnetic Semiconductors Ag2FeSn3S8 and Ag2FeSnS4 Determined by the EMF Method. Minerals, Metals and Materials Series, 2018, , 87-98.	0.4	3
150	High-Temperature Oxidation of Bismuth- and Antimony-Based Sulfosalts. Mineral Processing and Extractive Metallurgy Review, 2019, 40, 67-78.	5.0	3
151	Detection of gaseous species during KClâ€induced highâ€temperature corrosion by the means of CPFAAS and Clâ€APiâ€TOF. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 222-231.	1.5	3
152	Synthesis and Thermodynamic Investigation of Energy Materials in the Ag-Te-Cl System by the Solid-State Galvanic Cells. Jom, 2021, 73, 1487-1494.	1.9	3
153	Spinning of Endless Bioactive Silicate Class Fibres for Fibre Reinforcement Applications. Applied Sciences (Switzerland), 2021, 11, 7927.	2.5	3
154	Chapter 6. Tailoring of Bioactive Glasses. RSC Smart Materials, 0, , 136-160.	0.1	3
155	Thermal Stability and Thermodynamics of the Ag2ZnGeS4 Compound. Minerals, Metals and Materials Series, 2019, , 215-226.	0.4	2
156	Fuel and thermal NO formation during black liquor droplet pyrolysis with envelope flame. Fuel, 2020, 271, 117512.	6.4	2
157	Bioactive Glasses. Springer Handbooks, 2019, , 813-849.	0.6	2
158	Bioactive Glass Compositions Suitable for Repeated Heat-Treatments. Key Engineering Materials, 0, , 925-928.	0.4	2
159	Comparison of Antibacterial Effect of Three Bioactive Glasses. Key Engineering Materials, 0, , 345-348.	0.4	2
160	Effect of Storage Time on the Physicochemical Properties of Waste Fish Oils and Used Cooking Vegetable Oils. Energies, 2021, 14, 101.	3.1	2
161	In Vitro Dissolution of Na-Ca-P-Oxynitrides. Materials, 2021, 14, 7425.	2.9	2
162	Glass as a biomaterial: strategies for optimising bioactive glasses for clinical applications. Comptes Rendus - Geoscience, 2022, 354, 185-197.	1.2	2

#	Article	IF	CITATIONS
163	Melting Behaviour and Surface Structure of Glazes Containing Wollastonite and Dolomite. Advances in Science and Technology, 2006, 45, 590-595.	0.2	1
164	Compression properties and dissolution of bioactive glass S53P4 and n-butyl-2 cyanoacrylate tissue adhesive-composite. Bio-Medical Materials and Engineering, 2016, 27, 425-436.	0.6	1
165	Experimental investigation and thermodynamic re-assessment of the ternary copper-nickel-lead system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 61, 148-156.	1.6	1
166	Glass ionomer bone cements based on magnesium-containing bioactive glasses. Biomedical Glasses, 2019, 5, 1-12.	2.4	1
167	The Fast Silver Ion Conducting Solid-State Electrolytes for Deriving Thermodynamic Data. , 0, , .		1
168	Thermodynamic Examination of Quaternary Compounds in the Ag–Fe–(Ge, Sn)–Se Systems by the Solid-State EMF Method. Minerals, Metals and Materials Series, 2021, , 271-283.	0.4	1
169	Factors Controlling Antibacterial Properties of Bioactive Glasses. Key Engineering Materials, 0, , 173-176.	0.4	1
170	Thermal Analysis and Optimization of the Phase Diagram of the Cu-Ag Sulfide System. Energies, 2022, 15, 593.	3.1	1
171	Metal Rod Surfaces after Exposure to Used Cooking Oils. Sustainability, 2022, 14, 355.	3.2	1
172	The K2SO4–CaSO4 System and Its Role in Fouling and Slagging During High-Temperature Processes. Minerals, Metals and Materials Series, 2018, , 133-142.	0.4	0
173	Thermochemical Data of Selected Phases in the FeOx–FeSO4–Fe2(SO4)3 System. Minerals, Metals and Materials Series, 2019, , 227-240.	0.4	0
174	Tailoring of Bioactive Glasses. , 2012, , 43-58.		0
175	Amino Acids Reduce Mild Steel Corrosion in Used Cooking Oils. Sustainability, 2022, 14, 3858.	3.2	Ο