
Daniela S BassÃ"res

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1314680/publications.pdf Version: 2024-02-01

DANIELA S RASSÃ"DES

#	Article	IF	CITATIONS
1	Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer. Communications Biology, 2021, 4, 370.	4.4	12
2	IKKβ Kinase Promotes Stemness, Migration, and Invasion in KRAS-Driven Lung Adenocarcinoma Cells. International Journal of Molecular Sciences, 2020, 21, 5806.	4.1	1
3	Aurora A kinase and its activator TPX2 are potential therapeutic targets in KRAS-induced pancreatic cancer. Cellular Oncology (Dordrecht), 2020, 43, 445-460.	4.4	30
4	IKKβ targeting reduces KRAS-induced lung cancer angiogenesis in vitro and in vivo: A potential anti-angiogenic therapeutic target. Lung Cancer, 2019, 130, 169-178.	2.0	9
5	Where do we aspire to publish? A position paper on scientific communication in biochemistry and molecular biology. Brazilian Journal of Medical and Biological Research, 2019, 52, e8935.	1.5	1
6	Abstract B09: Exploring IKK \hat{l}^2 as an antiangiogenic therapeutic target in KRAS-induced lung cancer. , 2018, , .		0
7	Abstract 5864: Novel anti-BMI-1 therapy in non-small cell lung cancer. , 2018, , .		0
8	Preparation, characterization and in vitro evaluation of Îμ-polylysine-loaded polymer blend microparticles for potential pancreatic cancer therapy. Journal of Microencapsulation, 2017, 34, 582-591.	2.8	6
9	Development and characterization of miltefosine-loaded polymeric micelles for cancer treatment. Materials Science and Engineering C, 2017, 81, 327-333.	7.3	39
10	Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBPα expression. Science Translational Medicine, 2016, 8, 350ra104.	12.4	45
11	Aurora kinase targeting in lung cancer reduces KRAS-induced transformation. Molecular Cancer, 2016, 15, 12.	19.2	42
12	Abstract 1379: IKK \hat{I}^2 is a potential anti-angiogenic therapeutic target in KRAS-induced lung cancer. , 2015, ,		1
13	Using RNA Interference in Lung Cancer Cells to Target the IKK-NF-κB Pathway. Methods in Molecular Biology, 2015, 1280, 447-458.	0.9	1
14	Akt-dependent Activation of mTORC1 Complex Involves Phosphorylation of mTOR (Mammalian Target of) Tj ETC	2q0,0,0 rgl 3.4	3T /Overlock 118
15	IKK is a therapeutic target in KRAS-induced lung cancer with disrupted p53 activity. Genes and Cancer, 2014, 5, 41-55.	1.9	31
16	Abstract 533: MicroRNA486-5p is a KRas target involved in promoting cell proliferation in lung cancer. , 2014, , .		0
17	Abstract 4390: Aurora kinases: potential therapeutic targets in K-Ras-induced lung cancer , 2013, , .		0
18	Abstract LB-46: C/EBPα acts as tumor suppressor in lung cancer by inhibiting the proto-oncogene Bmi-1 , 2013, , .		0

Daniela S BassÃ"res

#	Article	IF	CITATIONS
19	Frequent downregulation of the transcription factor Foxa2 in lung cancer through epigenetic silencing. Lung Cancer, 2012, 77, 31-37.	2.0	38
20	Abstract 903: The IKKÎ \pm kinase is a potential therapeutic target in K-Ras-induced lung cancer. , 2012, , .		0
21	Abstract 4036: Frequent downregulation of the transcription factor Foxa2 in lung cancer through epigenetic silencing. , 2012, , .		0
22	RUNX1 regulates theCD34gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO Journal, 2011, 30, 4059-4070.	7.8	26
23	Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Research, 2010, 70, 3537-3546.	0.9	170
24	P2-115: A Causal Relationship between Oncogenic K-Ras Expression and NF-kappaB Activation in Lung Cancer. Journal of Thoracic Oncology, 2007, 2, S536-S537.	1.1	0
25	Nuclear factor-l®B and inhibitor of l®B kinase pathways in oncogenic initiation and progression. Oncogene, 2006, 25, 6817-6830.	5.9	627
26	Respiratory Failure Due to Differentiation Arrest and Expansion of Alveolar Cells following Lung-Specific Loss of the Transcription Factor C/EBPα in Mice. Molecular and Cellular Biology, 2006, 26, 1109-1123.	2.3	61
27	Block of C/EBPα function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. Journal of Experimental Medicine, 2006, 203, 371-381.	8.5	175
28	Characterisation of a new splice variant of MASK-BP3ARF and MASK human genes, and their expression patterns during haematopoietic cell differentiation. Gene, 2005, 363, 113-122.	2.2	3
29	The SH3 Domain of Alpha Spectrin Binds to Galectin-1 during Erythroid Differentiation Blood, 2005, 106, 1666-1666.	1.4	0
30	A Transcriptional Profiling Study of CCAAT/Enhancer Binding Protein Targets Identifies Hepatocyte Nuclear Factor 3β as a Novel Tumor Suppressor in Lung Cancer. Cancer Research, 2004, 64, 4137-4147.	0.9	66
31	Human leukocyte formin: a novel protein expressed in lymphoid malignancies and associated with Akt. Biochemical and Biophysical Research Communications, 2003, 311, 365-371.	2.1	46
32	ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochemical and Biophysical Research Communications, 2002, 294, 579-585.	2.1	53
33	DNAase I hypersensitive site 3' to the beta-globin gene cluster contains a TAA insertion specific for beta(S)-Benin haplotype. Haematologica, 2002, 87, 246-9.	3.5	2
34	β-Spectrin StaBárbara: a novel frameshift mutation in hereditary spherocytosis associated with detectable levels of mRNA and a germ cell line mosaicism. British Journal of Haematology, 2001, 115, 347-353.	2.5	7
35	Erythrocyte Ankyrin Promoter Mutations Associated with Recessive Hereditary Spherocytosis Cause Significant Abnormalities in Ankyrin Expression. Journal of Biological Chemistry, 2001, 276, 41683-41689.	3.4	26
36	Low frequency of ankyrin mutations in hereditary spherocytosis: Identification of three novel mutations. Human Mutation, 2000, 16, 529-529.	2.5	19

Daniela S BassÃ"res

#	Article	IF	CITATION
37	Association of the α-spectrin R28H mutation with allele αLELY and with αl/αII domain haplotypes in three Brazilian families. European Journal of Haematology, 2000, 64, 53-58.	2.2	2
38	Novel mutation in the MYOC gene in primary open angle glaucoma patients. Journal of Medical Genetics, 2000, 37, 301-303.	3.2	27
39	Mutation Analysis of the HFE Gene in Brazilian Populations. Blood Cells, Molecules, and Diseases, 1999, 25, 324-327.	1.4	37
40	Presence of allele αLELY in an Amazonian Indian population. , 1998, 57, 212-214.		3
41	Expression of Spectrin αI/50 Hereditary Elliptocytosis and Its Association with the α ^{LELY} Allele. Acta Haematologica, 1998, 100, 32-38.	1.4	8
42	βâ€Spectrin Campinas: a novel shortened βâ€chain variant associated with skipping of exon 30 and hereditary elliptocytosis. British Journal of Haematology, 1997, 97, 579-585.	2.5	8
43	Ca2+-dependent permeabilization of the inner mitochondrial membrane by 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 93-100.	1.0	51