Feng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1314388/publications.pdf

Version: 2024-02-01

		186265	2	223800	
78	2,384	28		46	
papers	citations	h-index		g-index	
70	78	78		1.402	
78	/0	70		1492	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Independent influence of gait speed and step length on stability and fall risk. Gait and Posture, 2010, 32, 378-382.	1.4	222
2	Perturbation Training Can Reduce Community-Dwelling Older Adults' Annual Fall Risk: A Randomized Controlled Trial. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1586-1594.	3.6	144
3	Automatic recognition of falls in gait-slip training: Harness load cell based criteria. Journal of Biomechanics, 2011, 44, 2243-2249.	2.1	109
4	Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults?. Journal of Biomechanics, 2014, 47, 3807-3812.	2.1	106
5	Learning to Resist Gait-Slip Falls: Long-Term Retention in Community-Dwelling Older Adults. Archives of Physical Medicine and Rehabilitation, 2012, 93, 557-564.	0.9	102
6	Learning from laboratory-induced falling: long-term motor retention among older adults. Age, 2014, 36, 9640.	3.0	95
7	Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. Journal of Biomechanics, 2009, 42, 1903-1908.	2.1	94
8	Dynamic Gait Stability, Clinical Correlates, and Prognosis of Falls Among Community-Dwelling Older Adults. Archives of Physical Medicine and Rehabilitation, 2011, 92, 799-805.	0.9	91
9	Predicted threshold against backward balance loss following a slip in gait. Journal of Biomechanics, 2008, 41, 1823-1831.	2.1	73
10	Generalization of treadmill-slip training to prevent a fall following a sudden (novel) slip in over-ground walking. Journal of Biomechanics, 2013, 46, 63-69.	2.1	73
11	Adaptive control reduces trip-induced forward gait instability among young adults. Journal of Biomechanics, 2012, 45, 1169-1175.	2.1	72
12	Predicted threshold against backward balance loss in gait. Journal of Biomechanics, 2007, 40, 804-811.	2.1	61
13	Dynamic gait stability of treadmill versus overground walking in young adults. Journal of Electromyography and Kinesiology, 2016, 31, 81-87.	1.7	60
14	Muscle weakness is related to slip-initiated falls among community-dwelling older adults. Journal of Biomechanics, 2016, 49, 238-243.	2.1	55
15	Mechanisms of limb collapse following a slip among young and older adults. Journal of Biomechanics, 2006, 39, 2194-2204.	2.1	52
16	Adaptation and generalization to opposing perturbations in walking. Neuroscience, 2013, 246, 435-450.	2.3	50
17	Controlled whole-body vibration training reduces risk of falls among community-dwelling older adults. Journal of Biomechanics, 2015, 48, 3206-3212.	2.1	49
18	Strength or power, which is more important to prevent slip-related falls?. Human Movement Science, 2015, 44, 192-200.	1.4	47

#	Article	IF	CITATIONS
19	Retention of the "first-trial effect―in gait-slip among community-living older adults. GeroScience, 2017, 39, 93-102.	4.6	45
20	Generalization of motor adaptation to repeated-slip perturbation across tasks. Neuroscience, 2011, 180, 85-95.	2.3	42
21	Dynamic stability and compensatory stepping responses during anterior gait–slip perturbations in people with chronic hemiparetic stroke. Journal of Biomechanics, 2014, 47, 2751-2758.	2.1	37
22	Role of individual lower limb joints in reactive stability control following a novel slip in gait. Journal of Biomechanics, 2010, 43, 397-404.	2.1	36
23	Can stability really predict an impending slip-related fall among older adults?. Journal of Biomechanics, 2014, 47, 3876-3881.	2.1	35
24	Two types of slip-induced falls among community dwelling older adults. Journal of Biomechanics, 2012, 45, 1259-1264.	2.1	34
25	Correction of the inertial effect resulting from a plate moving under low-friction conditions. Journal of Biomechanics, 2007, 40, 2723-2730.	2.1	32
26	Determination of instantaneous stability against backward balance loss: Two computational approaches. Journal of Biomechanics, 2008, 41, 1818-1822.	2.1	32
27	Feasible Stability Region in the Frontal Plane During Human Gait. Annals of Biomedical Engineering, 2009, 37, 2606-2614.	2,5	31
28	Alteration in community-dwelling older adults' level walking following perturbation training. Journal of Biomechanics, 2013, 46, 2463-2468.	2.1	31
29	Muscle power is more important than strength in preventing falls in community-dwelling older adults. Journal of Biomechanics, 2022, 134, 111018.	2.1	27
30	Control of center of mass motion state through cuing and decoupling of spontaneous gait parameters in level walking. Journal of Biomechanics, 2010, 43, 2548-2553.	2.1	26
31	Limits of recovery against slip-induced falls while walking. Journal of Biomechanics, 2011, 44, 2607-2613.	2.1	24
32	Efficacy of Controlled Whole-Body Vibration Training on Improving Fall Risk Factors in Stroke Survivors: A Meta-analysis. Neurorehabilitation and Neural Repair, 2020, 34, 275-288.	2.9	23
33	Limb Collapse, Rather Than Instability, Causes Failure in Sit-to-Stand Performance Among Patients With Parkinson Disease. Physical Therapy, 2011, 91, 381-391.	2.4	21
34	Adaptive gait responses to awareness of an impending slip during treadmill walking. Gait and Posture, 2016, 50, 175-179.	1.4	20
35	Effects of visual deprivation on stability among young and older adults during treadmill walking. Gait and Posture, 2017, 54, 106-111.	1.4	20
36	Effects of controlled whole-body vibration training in improving fall risk factors among individuals with multiple sclerosis: A pilot study. Disability and Rehabilitation, 2018, 40, 553-560.	1.8	19

#	Article	IF	CITATIONS
37	Reduced intensity in gait-slip training can still improve stability. Journal of Biomechanics, 2014, 47, 2330-2338.	2.1	18
38	Effect of Externally Cued Training on Dynamic Stability Control During the Sit-to-Stand Task in People With Parkinson Disease. Physical Therapy, 2013, 93, 492-503.	2.4	17
39	Learning from Falling: Retention of Fallâ€Resisting Behavior Derived from One Episode of Laboratoryâ€Induced Slip Training. Journal of the American Geriatrics Society, 2011, 59, 2392-2393.	2.6	16
40	Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls. Gait and Posture, 2018, 66, 160-165.	1.4	16
41	Obesity May Not Induce Dynamic Stability Disadvantage during Overground Walking among Young Adults. PLoS ONE, 2017, 12, e0169766.	2.5	15
42	Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 35, 135-141.	2.0	14
43	Biomechanical mechanism of Tai-Chi gait for preventing falls: A pilot study. Journal of Biomechanics, 2020, 105, 109769.	2.1	14
44	Interventions for preventing falls in people post-stroke: A meta-analysis of randomized controlled trials. Gait and Posture, 2021, 84, 377-388.	1.4	14
45	Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults. Journal of Biomechanics, 2017, 53, 148-153.	2.1	13
46	Effects of vibration training in reducing risk of slip-related falls among young adults with obesity. Journal of Biomechanics, 2017, 57, 87-93.	2.1	12
47	Effects of vibration intensity on lower limb joint moments during standing. Journal of Biomechanics, 2019, 88, 18-24.	2.1	12
48	Reactive Control and its Operation Limits in Responding to a Novel Slip in Gait. Annals of Biomedical Engineering, 2010, 38, 3246-3256.	2.5	11
49	Adaptive control of center of mass (global) motion and its joint (local) origin in gait. Journal of Biomechanics, 2014, 47, 2797-2800.	2.1	11
50	Vibration training improves disability status in multiple sclerosis: A pretest-posttest pilot study. Journal of the Neurological Sciences, 2016, 369, 96-101.	0.6	11
51	Relative importance of physical and psychological factors to slowness in people with mild to moderate multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 27, 81-90.	2.0	10
52	Leg Joint Stiffness Affects Dynamics of Backward Falling From Standing Height: A Simulation Work. Journal of Biomechanical Engineering, 2020, 142, .	1.3	10
53	Relative importance of vision and proprioception in maintaining standing balance in people with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 39, 101901.	2.0	9
54	Anterior load carriage increases the risk of falls in young adults following a slip in gait. Safety Science, 2022, 145, 105489.	4.9	9

#	Article	IF	CITATIONS
55	Association Between Anthropometric Factors and Falls in Communityâ€Dwelling Older Adults During a Simulated Slip While Walking. Journal of the American Geriatrics Society, 2014, 62, 1808-1810.	2.6	7
56	Effects of anterior load carriage on gait parameters: A systematic review with meta-analysis. Applied Ergonomics, 2022, 98, 103587.	3.1	7
57	Effects of anteriorly-loaded treadmill walking on dynamic gait stability in young adults. Gait and Posture, 2022, 94, 79-84.	1.4	7
58	Effects of a single-session stance-slip perturbation training program on reducing risk of slip-related falls. Journal of Biomechanics, 2018, 72, 1-6.	2.1	6
59	Application of Vibration Training in People with Common Neurological Disorders. , 2020, , 343-353.		6
60	Individual analysis of dynamic stability for twenty-four Tai Chi forms among persons with knee osteoarthritis: A pilot study. Gait and Posture, 2021, 86, 22-26.	1.4	4
61	Ballroom Dance as a Form of Rehabilitation: A Systematic Review. Biomechanics, 2021, 1, 307-321.	1.2	4
62	Effects of vibration training on quality of life in older adults: a preliminary systematic review and meta-analysis. Quality of Life Research, 2022, 31, 3109-3122.	3.1	4
63	Identification of Optimal Foot Tactile Sensation Threshold for Detecting Fall Risk Among Community-Dwelling Older Adults. Physical Therapy, 2021, 101, .	2.4	3
64	Effects of Vibration Training on Cognition and Quality of Life in People with Multiple Sclerosis. International Journal of MS Care, 2021, , .	1.0	3
65	A kinetic analysis of the triple step in recreational swing dancers. Sports Biomechanics, 2021, , 1-14.	1.6	2
66	Knee joint biomechanics of simplified 24 Tai Chi forms and association with pain in individuals with knee osteoarthritis: A pilot study. Osteoarthritis and Cartilage Open, 2021, 3, 100149.	2.0	2
67	Influence of multiple sclerosis on dynamic gait stability. Journal of Biomechanics, 2020, 106, 109827.	2.1	2
68	Preliminary study on acute effects of an intervention to increase dorsiflexion range of motion in reducing medial knee displacement. Clinical Biomechanics, 2022, 95, 105637.	1.2	2
69	Ground reaction forces and muscle activities during anteriorly-loaded overground walking: Preliminary results. International Journal of Industrial Ergonomics, 2022, 90, 103328.	2.6	2
70	Predicted thresholds of dynamic stability against backward balance loss under slip and nonslip bipedal walking conditions. , 2008, , .		1
71	Controlled Whole-body Vibration Training Reduces Risk Of Falls In People With Multiple Sclerosis. Medicine and Science in Sports and Exercise, 2016, 48, 398.	0.4	0
72	Vibration Training Improves Disability Status Among Individuals With Multiple Sclerosis. Medicine and Science in Sports and Exercise, 2016, 48, 399.	0.4	0

#	Article	IF	CITATIONS
73	Effects Of Visual Deprivation On Stability Among Young Adults During Treadmill Walking. Medicine and Science in Sports and Exercise, 2016, 48, 412-413.	0.4	0
74	Slip and Fall Risk Assessment. , 2018, , 915-936.		0
75	Characteristics of quadriceps fatigue induced by continuous maximal knee extension among young and elderly adult men with different levels of physical activity. Isokinetics and Exercise Science, 2021, 29, 193-197.	0.4	0
76	Dynamic stability based identification of optimal Tai Chi forms for preventing falls among older adults with knee osteoarthritis. Osteoarthritis and Cartilage Open, 2021, 3, 100216.	2.0	0
77	Slip and Fall Risk Assessment. , 2016, , 1-22.		0
78	Treadmill-based Perturbation Training For Preventing Falls Among Young Adults. Medicine and Science in Sports and Exercise, 2017, 49, 685.	0.4	0