Gang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313971/publications.pdf

Version: 2024-02-01

		201674	138484
57	5,679 citations	27	58
papers	citations	h-index	g-index
59	59	59	8669
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10800-10805.	13.8	1,836
2	Ultrathin rhodium nanosheets. Nature Communications, 2014, 5, 3093.	12.8	428
3	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2016, 128, 10958-10963.	2.0	373
4	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344
5	Synergetic Integration of Cu _{1.94} S–Zn _{<i>x</i>} Cd _{1–<i>x</i>} S Heteronanorods for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 4286-4289.	13.7	257
6	A 1D/2D Helical CdS/ZnIn ₂ S ₄ Nanoâ€Heterostructure. Angewandte Chemie - International Edition, 2014, 53, 2339-2343.	13.8	232
7	Half metallicity along the edge of zigzag boron nitride nanoribbons. Physical Review B, 2008, 78, .	3.2	226
8	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	10.3	224
9	Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nature Communications, 2016, 7, 12362.	12.8	190
10	Making a field effect transistor on a single graphene nanoribbon by selective doping. Applied Physics Letters, 2007, 91, 253122.	3.3	152
11	Intermetallic Ni <i>_xM_y</i> (<i>M</i> = Ga and Sn) Nanocrystals: A Nonâ€precious Metal Catalyst for Semiâ€Hydrogenation of Alkynes. Advanced Materials, 2016, 28, 4747-4754.	21.0	145
12	Alkali-Metal-Doped B80 as High-Capacity Hydrogen Storage Media. Journal of Physical Chemistry C, 2008, 112, 19268-19271.	3.1	107
13	Modulating fcc and hcp Ruthenium on the Surface of Palladium–Copper Alloy through Tunable Lattice Mismatch. Angewandte Chemie - International Edition, 2016, 55, 5501-5505.	13.8	95
14	Molecule Channels Directed by Cationâ€Decorated Graphene Oxide Nanosheets and Their Application as Membrane Reactors. Advanced Materials, 2017, 29, 1606093.	21.0	83
15	Magnetism of C Adatoms on BN Nanostructures: Implications for Functional Nanodevices. Journal of the American Chemical Society, 2009, 131, 1796-1801.	13.7	80
16	Optimizing photoelectrochemical properties of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>TiO </mml:mtext> </mml:mrow> <mml:mn> chemical codoping. Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	2 <i>3</i> mml:n	nn> ⁶² /mml:msı
17	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	10.0	60
18	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	2.0	59

#	Article	IF	CITATIONS
19	Dimensional effects on field emission properties of the body for single-walled carbon nanotube. Applied Physics Letters, 2001, 79, 836-838.	3.3	42
20	Effects of vacancy-carboxyl pair functionalization on electronic properties of carbon nanotubes. Applied Physics Letters, 2006, 89, 173130.	3.3	42
21	Mechanism of nanoelectronic switch based on telescoping carbon nanotubes. Applied Physics Letters, 2006, 88, 173107.	3.3	42
22	Spontaneous edge-defect formation and defect-induced conductance suppression in graphene nanoribbons. Physical Review B, 2010, 82, .	3.2	41
23	Modulating fcc and hcp Ruthenium on the Surface of Palladium–Copper Alloy through Tunable Lattice Mismatch. Angewandte Chemie, 2016, 128, 5591-5595.	2.0	33
24	Field Emission in Doped Nanotubes. Journal of Nanoscience and Nanotechnology, 2005, 5, 1421-1434.	0.9	31
25	Lattice-Strain Control of Flexible Janus Indium Chalcogenide Monolayers for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2020, 124, 167-174.	3.1	30
26	N-Promoted Ru ₁ /TiO ₂ single-atom catalysts for photocatalytic water splitting for hydrogen production: a density functional theory study. Physical Chemistry Chemical Physics, 2020, 22, 11392-11399.	2.8	28
27	Rational synthesis and the structure-property relationships of nanoheterostructures: a combinative study of experiments and theory. NPG Asia Materials, 2015, 7, e164-e164.	7.9	20
28	Spontaneous polarizations of ultrashort-period epitaxial KNbO3â^•(KTaO3)m superlattices: An ab initio investigation. Applied Physics Letters, 2005, 86, 232903.	3.3	19
29	Room-temperature dissociative hydrogen chemisorption on boron-doped fullerenes. Physical Review B, 2008, 77, .	3.2	19
30	Ab initio Study of Half-Metallicity and Magnetism of Complex Organometallic Molecular Wires. Journal of Physical Chemistry C, 2011, 115, 7292-7297.	3.1	19
31	Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Science China Materials, 2014, 57, 34-41.	6.3	19
32	Ferromagnetism and topological surface states of manganese doped Bi2Te3: Insights from density-functional calculations. Journal of Chemical Physics, 2014, 140, 124704.	3.0	19
33	Utilization of Active Ni to Fabricate Pt–Ni Nanoframe/NiAl Layered Double Hydroxide Multifunctional Catalyst through In Situ Precipitation. Chemistry - A European Journal, 2015, 21, 13181-13185.	3.3	19
34	Colloidal 2D–0D Lateral Nanoheterostructures: A Case Study of Site-Selective Growth of CdS Nanodots onto Bi ₂ Se ₃ Nanosheets. Nano Letters, 2015, 15, 4200-4205.	9.1	17
35	2D van der Waals heterostructures of graphitic BCN as direct Z-scheme photocatalysts for overall water splitting: the role of polar Ï∈-conjugated moieties. Physical Chemistry Chemical Physics, 2020, 22, 23735-23742.	2.8	16
36	Trends in charge transfer and spin alignment of metallocene on graphene. Physical Review B, 2011, 83, .	3.2	15

#	Article	IF	Citations
37	A theoretical study on the mechanism of hydrogen evolution on non-precious partially oxidized nickel-based heterostructures for fuel cells. Physical Chemistry Chemical Physics, 2018, 20, 7968-7973.	2.8	15
38	Insight into enhanced hydrogen evolution of single-atom Cu1/TiO2 catalysts from first principles. International Journal of Hydrogen Energy, 2022, 47, 4653-4661.	7.1	15
39	Phonon thermal conductivity of GaN nanotubes. Journal of Applied Physics, 2012, 112, .	2.5	14
40	Hydrogen evolution/spillover effect of single cobalt atom on anatase TiO2 from first-principles calculations. Applied Surface Science, 2021, 536, 147831.	6.1	13
41	Quantum confinement of crystalline silicon nanotubes with nonuniform wall thickness: Implication to modulation doping. Applied Physics Letters, 2007, 91, 103107.	3.3	12
42	Identification of active sites available for hydrogen evolution of Single-Atom Ni1/TiO2 catalysts. Applied Surface Science, 2022, 579, 152139.	6.1	11
43	Activated dissociation of O2 on Pb(111) surfaces by Pb adatoms. Physical Review B, 2009, 80, .	3.2	7
44	Formation, Morphology, and Effect of Complex Defects in Boron Nitride Nanotubes: An ab initio Calculation. Journal of Physical Chemistry C, 2011, 115, 12782-12788.	3.1	7
45	First principles study of ruthenium(<scp>ii</scp>) sensitizer adsorption on anatase TiO ₂ (001) surface. RSC Advances, 2015, 5, 60230-60236.	3.6	7
46	Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study. Journal of Chemical Physics, 2016, 144, 144706.	3.0	7
47	Conditions for magnetic and electronic properties of ultrathin Ni–Fe hydroxide nanosheets as catalysts: a DFT+U study. Science China Materials, 2017, 60, 664-673.	6.3	7
48	Theoretical investigations of transport properties of organic solvents in cation-functionalized graphene oxide membranes: Implications for drug delivery. Nano Research, 2018, 11, 254-263.	10.4	7
49	Single electron emission from the closed-tips of single-walled carbon nanotubes. Journal of Chemical Physics, 2004, 121, 12600.	3.0	6
50	Long periodic oscillation of electronic properties in capped finite-length armchair carbon nanotubes. Physical Review B, 2005, 71, .	3.2	6
51	Metal/graphene heterobilayers as hydrogen evolution reaction cathodes: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 4594-4599.	2.8	6
52	Effects of a graphene substrate on the structure and properties of atomically thin metal sheets. Physical Chemistry Chemical Physics, 2020, 22, 667-673.	2.8	6
53	Preparing spin-polarized scanning tunneling microscope probes on capped carbon nanotubes by Fe doping: A first-principles study. Applied Physics Letters, 2009, 94, 193106.	3.3	4
54	Theoretical study on in situ synthesis of Pt/Ni Al hydroxide composites by etching of Pt Ni nanoparticles. Chemical Physics Letters, 2017, 679, 200-206.	2.6	3

#	Article	IF	CITATION
55	Antisite Atom Segregation in Porous Boron Nitride Nanotubes: Formation Mechanism and Characterization. Journal of Physical Chemistry C, 2012, 116, 22051-22056.	3.1	2
56	Structural and electronic properties of Ge-Si, Sn-Si, and Pb-Si dimers on Si(001) from density-functional calculations. Physical Review B, 2009, 79, .	3.2	1
57	Theoretical Modeling and Computational Simulation of Electronic Properties of Nanomaterials. Journal of Nanomaterials, 2011, 2011, 1-2.	2.7	0