Joseph Lehar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313779/publications.pdf

Version: 2024-02-01

44 papers 23,541 citations

196777 29 h-index 263392 45 g-index

46 all docs

46 docs citations

46 times ranked

50563 citing authors

#	Article	IF	CITATIONS
1	Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature, 2019, 569, 503-508.	13.7	2,149
2	Quantifying neurologic disease using biosensor measurements in-clinic and in free-living settings in multiple sclerosis. Npj Digital Medicine, 2019, 2, 123.	5.7	35
3	Natural Language–based Machine Learning Models for the Annotation of Clinical Radiology Reports. Radiology, 2018, 287, 570-580.	3.6	114
4	Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nature Medicine, 2018, 24, 1337-1341.	15.2	308
5	Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf $\langle \sup \hat{a}^* \widehat{a}^* \rangle$ mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3151-3156.	3.3	48
6	Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis. PLoS ONE, 2016, 11, e0147651.	1.1	14
7	High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Research, 2016, 76, 6950-6963.	0.4	30
8	A screen of approved drugs and molecular probes identifies therapeutics with anti–Ebola virus activity. Science Translational Medicine, 2015, 7, 290ra89.	5.8	212
9	High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 2015, 21, 1318-1325.	15.2	1,065
10	Gene Expression Ratios Lead to Accurate and Translatable Predictors of DR5 Agonism across Multiple Tumor Lineages. PLoS ONE, 2015, 10, e0138486.	1.1	10
11	Characterization of the Novel and Specific PI3K $\hat{l}\pm$ Inhibitor NVP-BYL719 and Development of the Patient Stratification Strategy for Clinical Trials. Molecular Cancer Therapeutics, 2014, 13, 1117-1129.	1.9	385
12	CDK 4/6 Inhibitors Sensitize PIK3CA Mutant Breast Cancer to PI3K Inhibitors. Cancer Cell, 2014, 26, 136-149.	7.7	375
13	Inhibiting Tankyrases Sensitizes KRAS-Mutant Cancer Cells to MEK Inhibitors via FGFR2 Feedback Signaling. Cancer Research, 2014, 74, 3294-3305.	0.4	34
14	A Meta-Analysis Approach for Characterizing Pan-Cancer Mechanisms of Drug Sensitivity in Cell Lines. PLoS ONE, 2014, 9, e103050.	1.1	7
15	FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection. Science Translational Medicine, 2013, 5, 190ra79.	5.8	285
16	RAD001 Enhances the Potency of BEZ235 to Inhibit mTOR Signaling and Tumor Growth. PLoS ONE, 2012, 7, e48548.	1.1	29
17	The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012, 483, 603-607.	13.7	6,473
18	Knocking out multigene redundancies via cycles of sexual assortment and fluorescence selection. Nature Methods, 2011, 8, 159-164.	9.0	74

#	Article	IF	CITATIONS
19	Chemical combinations elucidate pathway interactions and regulation relevant to Hepatitis C replication. Molecular Systems Biology, 2010, 6, 375.	3.2	30
20	Recurrent, Robust and Scalable Patterns Underlie Human Approach and Avoidance. PLoS ONE, 2010, 5, e10613.	1.1	22
21	Identification of Synergistic Combinations of F508del Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. Assay and Drug Development Technologies, 2010, 8, 669-684.	0.6	20
22	Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nature Biotechnology, 2009, 27, 659-666.	9.4	784
23	Therapeutic selectivity and the multi-node drug target. Discovery Medicine, 2009, 8, 185-90.	0.5	16
24	Combination chemical genetics. Nature Chemical Biology, 2008, 4, 674-681.	3.9	158
25	Highâ€order combination effects and biological robustness. Molecular Systems Biology, 2008, 4, 215.	3.2	86
26	THE CENTRAL COMPONENT OF GRAVITATIONAL LENS Q0957+561. Astronomical Journal, 2008, 135, 984-990.	1.9	1
27	Chemical combination effects predict connectivity in biological systems. Molecular Systems Biology, 2007, 3, 80.	3.2	243
28	Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discovery Today, 2007, 12, 34-42.	3.2	947
29	Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts. Astrophysical Journal, 2006, 649, 616-634.	1.6	352
30	First Results from a Photometric Survey of Strong Gravitational Lens Environments. Astrophysical Journal, 2006, 646, 85-106.	1.6	52
31	The FIRST-Optical-VLA Survey for Lensed Radio Lobes. Astronomical Journal, 2005, 130, 1977-1995.	1.9	6
32	Radio Variability of Radioâ€quiet and Radioâ€loud Quasars. Astrophysical Journal, 2005, 618, 108-122.	1.6	99
33	PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 2003, 34, 267-273.	9.4	8,185
34	Systematic discovery of multicomponent therapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7977-7982.	3.3	551
35	NICMOS and VLA Observations of the Gravitationally Lensed Ultraluminous BAL Quasar APM 08279+5255: Detection of a Third Image. Astronomical Journal, 1999, 118, 1922-1930.	1.9	60
36	A Reassessment of the Data and Models of the Gravitational Lens Q0957+561. Astrophysical Journal, 1999, 520, 479-490.	1.6	24

#	Article	IF	CITATIONS
37	Ringlike Structure in the Radio Lobe of MG 0248+0641. Astronomical Journal, 1998, 115, 37-48.	1.9	6
38	A Gravitational Lens Solution for the [ITAL]IRAS[/ITAL] Galaxy FSC 10214+4724. Astrophysical Journal, 1995, 450, L41-L44.	1.6	84
39	Optical rings: a large number of gravitational lenses?. Monthly Notices of the Royal Astronomical Society, 1992, 259, 31P-34P.	1.6	28
40	Reconciling the image brightness ratios in the gravitational lens system 0957 + 561. Astrophysical Journal, 1992, 387, L61.	1.6	19
41	The Hubble constant from VLA measurement of the time delay in the double quasar 0957+561. Nature, 1991, 352, 43-45.	13.7	32
42	Faint radio sources and gravitational lensing. Astrophysical Journal, 1990, 353, 34.	1.6	8
43	The second MIT-Green Bank 5 GHz survey. Astrophysical Journal, Supplement Series, 1990, 72, 621.	3.0	38
44	The third MIT-Green Bank 5 GHz survey. Astrophysical Journal, Supplement Series, 1990, 74, 129.	3.0	40