Fabio La Mantia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient, Dendriteâ€Free Zinc Electrodeposition in Mild Aqueous Zincâ€Ion Batteries through Indiumâ€Based Substrates. Batteries and Supercaps, 2022, 5, .	4.7	13
2	Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nature Communications, 2022, 13, 687.	12.8	200
3	Insights into the Transport and Thermodynamic Properties of a Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte for Battery Applications. Journal of Physical Chemistry Letters, 2022, 13, 1734-1741.	4.6	6
4	Statistical Analysis of the Measurement Noise in Dynamic Impedance Spectra. ChemElectroChem, 2022, 9, .	3.4	2
5	Electrochemical Methods for Exploiting Lowâ€īemperature Heat Sources: Challenges in Material Research. Advanced Energy Materials, 2022, 12, .	19.5	8
6	Statistical Analysis of the Measurement Noise in Dynamic Impedance Spectra. ChemElectroChem, 2022, 9, .	3.4	4
7	Recent advances in reactor design and control for lithium recovery by means of electrochemical ion pumping. Current Opinion in Electrochemistry, 2022, 35, 101089.	4.8	7
8	Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis. Energy and Environmental Science, 2021, 14, 1057-1082.	30.8	28
9	Estimation and correction of instrument artefacts in dynamic impedance spectra. Scientific Reports, 2021, 11, 1362.	3.3	10
10	Self-discharge in Li-ion aqueous batteries: A case study on LiMn2O4. Electrochimica Acta, 2021, 373, 137847.	5.2	22
11	Double Flame-Fabricated High-Performance AlPO ₄ /LiMn ₂ O ₄ Cathode Material for Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4428-4443.	5.1	16
12	Effect of the reactants concentration on the synthesis and cycle life of copper hexacyanoferrate for aqueous Zn-ion batteries. Electrochemistry Communications, 2021, 126, 107030.	4.7	13
13	Characterising lithium-ion electrolytes via operando Raman microspectroscopy. Nature Communications, 2021, 12, 4053.	12.8	46
14	Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination, 2020, 475, 114192.	8.2	55
15	Dynamic impedance spectroscopy of LiMn2O4 thin films made by multi-layer pulsed laser deposition. Electrochimica Acta, 2020, 331, 135385.	5.2	12
16	Irreversible Structural Changes of Copper Hexacyanoferrate Used as a Cathode in Znâ€lon Batteries. Chemistry - A European Journal, 2020, 26, 4917-4922.	3.3	31
17	Microstructural Changes of Prussian Blue Derivatives during Cycling in Zinc ontaining Electrolytes. ChemElectroChem, 2020, 7, 3301-3310.	3.4	17
18	Frontispiece: Irreversible Structural Changes of Copper Hexacyanoferrate Used as a Cathode in Znâ€lon Batteries. Chemistry - A European Journal, 2020, 26, .	3.3	0

#	Article	IF	CITATIONS
19	Thermally Regenerable Redox Flow Battery. ChemSusChem, 2020, 13, 5460-5467.	6.8	16
20	What is the trigger for the hydrogen evolution reaction? – towards electrocatalysis beyond the Sabatier principle. Physical Chemistry Chemical Physics, 2020, 22, 8768-8780.	2.8	41
21	Solid–Electrolyte Interphase at Positive Electrodes in Highâ€Energy Liâ€Ion Batteries: Current Understanding and Analytical Tools. Batteries and Supercaps, 2020, 3, 672-697.	4.7	30
22	Thermally Regenerable Redox Flow Battery for Exploiting Low-Temperature Heat Sources. Cell Reports Physical Science, 2020, 1, 100056.	5.6	16
23	Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Current Opinion in Electrochemistry, 2020, 21, 84-92.	4.8	177
24	Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Advanced Materials, 2020, 32, e1905440.	21.0	198
25	A New Method for Measuring Transference Number Using Raman Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-01, 278-278.	0.0	0
26	Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains. Computers and Chemical Engineering, 2019, 129, 106493.	3.8	20
27	Dynamic Impedance Spectroscopy of Nickel Hexacyanoferrate Thin Films. ChemElectroChem, 2019, 6, 5387-5395.	3.4	13
28	Effect of Current Density and Mass Loading on the Performance of a Flow-Through Electrodes Cell for Lithium Recovery. Journal of the Electrochemical Society, 2019, 166, E286-E292.	2.9	21
29	Comparison between cyclic voltammetry and differential charge plots from galvanostatic cycling. Journal of Electroanalytical Chemistry, 2019, 847, 113170.	3.8	24
30	Electro-oxidation of p-silicon in fluoride-containing electrolyte: a physical model for the regime of negative differential resistance. European Physical Journal: Special Topics, 2019, 227, 2641-2658.	2.6	7
31	On the physical definition of dynamic impedance: How to design an optimal strategy for data extraction. Electrochimica Acta, 2019, 304, 513-520.	5.2	26
32	Space-Charge Effects at the Li ₇ La ₃ Zr ₂ O ₁₂ /Poly(ethylene oxide) Interface. ACS Applied Materials & Interfaces, 2019, 11, 11999-12007.	8.0	78
33	Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries. Energy Storage Materials, 2019, 19, 360-369.	18.0	112
34	Extracting the kinetic parameters of the hydrogen evolution reaction at Pt in acidic media by means of dynamic multi-frequency analysis. Electrochimica Acta, 2019, 308, 328-336.	5.2	21
35	Expanding the lifetime of Li-ion batteries through optimization of charging profiles. Journal of Cleaner Production, 2019, 225, 928-938.	9.3	26
36	Dynamic Impedance Spectroscopy of Nickel Hexacyanoferrate Thin Films. ChemElectroChem, 2019, 6, 5353-5353.	3.4	2

#	Article	IF	CITATIONS
37	Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy, 2019, 57, 549-557.	16.0	19
38	Heat recovery in energy production from low temperature heat sources. AICHE Journal, 2019, 65, 980-991.	3.6	15
39	Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies. Renewable Energy, 2019, 133, 1034-1045.	8.9	23
40	Li7La3Zr2O12-PEO Composite Electrolytes and the Role of Interface Resistance. ECS Meeting Abstracts, 2019, , .	0.0	0
41	Measurement and Analysis of Dynamic Impedance Spectra Acquired During the Oscillatory Electrodissolution of pâ€√ype Silicon in Fluorideâ€Containing Electrolytes. ChemElectroChem, 2018, 5, 1548-1551.	3.4	4
42	Effect of Pt and Au current collector in LiMn ₂ O ₄ thin film for micro-batteries. Nanotechnology, 2018, 29, 035404.	2.6	16
43	Determination of the Flat Band Potential of Nanoparticles in Porous Electrodes by Blocking the Substrate–Electrolyte Contact. Journal of Physical Chemistry C, 2018, 122, 2796-2805.	3.1	27
44	Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination, 2018, 428, 29-39.	8.2	87
45	Differential Capacitance Measurements on Passive Films. , 2018, , 75-92.		2
46	Capacitive Energy Extraction From Double Layer Expansion (CDLE). Fundamentals of the Method. Interface Science and Technology, 2018, , 87-117.	3.3	5
47	Balancing Costs, Safety and CO2 Emissions in the Design of Hydrogen Supply Chains. Computer Aided Chemical Engineering, 2018, 43, 603-608.	0.5	1
48	Electrochemical and Morphological Characterization of Znâ~'Alâ~'Cu Layered Double Hydroxides as a Negative Electrode in Aqueous Zincâ€ion Batteries. ChemElectroChem, 2018, 5, 2054-2054.	3.4	1
49	Electrochemical and Morphological Characterization of Znâ^'Alâ^'Cu Layered Double Hydroxides as a Negative Electrode in Aqueous Zincâ€ion Batteries. ChemElectroChem, 2018, 5, 2073-2079.	3.4	25
50	Phase transformation of copper hexacyanoferrate (KCuFe(CN)6) during zinc insertion: Effect of co-ion intercalation. Journal of Power Sources, 2018, 400, 167-171.	7.8	80
51	Intercalation into a Prussian Blue Derivative from Solutions Containing Two Species of Cations. ChemPhysChem, 2017, 18, 917-925.	2.1	41
52	Dynamic impedance spectroscopy using dynamic multi-frequency analysis: A theoretical and experimental investigation. Electrochimica Acta, 2017, 246, 553-563.	5.2	38
53	(Invited) Characterization of Thin Passive Film-Electrolyte Junctions. The Amorphous Semiconductor (a-SC) Schottky Barrier Approach. ECS Transactions, 2017, 75, 29-45.	0.5	1
54	Solid Electrolyte Interphase (SEI) at TiO ₂ Electrodes in Li-Ion Batteries: Defining <i>Apparent</i> and <i>Effective</i> SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces, 2017, 9, 3123-3130.	8.0	52

#	Article	IF	CITATIONS
55	Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 28381-28387.	2.8	20
56	Impedance Spectroscopy Analysis of the Lithium Ion Transport through the Li ₇ La ₃ Zr ₂ O ₁₂ /P(EO) ₂₀ Li Interface. Journal of the Electrochemical Society, 2017, 164, A2298-A2303.	2.9	58
57	The Amorphous Semiconductor Schottky Barrier Approach to Study the Electronic Properties of Anodic Films on Ti. Journal of the Electrochemical Society, 2017, 164, C516-C525.	2.9	17
58	Optimized Lithium Recovery from Brines by using an Electrochemical Ionâ€Pumping Process Based on λâ€MnO ₂ and Nickel Hexacyanoferrate. ChemElectroChem, 2017, 4, 143-149.	3.4	92
59	Coupling the Charging Current and the Electronâ€Transfer Process: The Effect on Impedance Spectra. ChemElectroChem, 2017, 4, 122-129.	3.4	7
60	Influence of Hydrodynamics on the Lithium Recovery Efficiency in an Electrochemical Ion Pumping Separation Process. Journal of the Electrochemical Society, 2017, 164, E586-E595.	2.9	35
61	The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochimica Acta, 2017, 258, 703-708.	5.2	102
62	Model-based Optimization of Battery Energy Storage Systems. Computer Aided Chemical Engineering, 2017, , 2563-2568.	0.5	0
63	Capacitive mixing and mixing entropy battery. , 2016, , 181-218.		6
64	Layered double hydroxides as a suitable substrate to improve the efficiency of Zn anode in neutral pH Zn-ion batteries. Electrochemistry Communications, 2016, 68, 1-4.	4.7	71
65	On the Analysis of Nonâ€stationary Impedance Spectra. Electroanalysis, 2016, 28, 2346-2353.	2.9	25
66	Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO ₂ upon hydrogen annealing. Chemical Communications, 2016, 52, 11524-11526.	4.1	15
67	Cell Design for Electrochemical Characterizations of Metal-Ion Batteries in Organic and Aqueous Electrolyte. Analytical Chemistry, 2016, 88, 7916-7920.	6.5	14
68	Synthesis of nanostructured LiMn ₂ O ₄ thin films by glancing angle deposition for Li-ion battery applications. Nanotechnology, 2016, 27, 455402.	2.6	20
69	Electric Field Modulation of Silicon upon Tethering of Highly Charged Nucleic Acids. Capacitive Studies on DNAâ€modified Silicon (111). Electroanalysis, 2016, 28, 2367-2372.	2.9	Ο
70	An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochimica Acta, 2016, 222, 74-83.	5.2	189
71	Lithium recovery by means of electrochemical ion pumping: a comparison between salt capturing and selective exchange. Journal of Physics Condensed Matter, 2016, 28, 114005.	1.8	35
72	Capturing Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) from contaminated water sources by electro-deposition on hydrotalcite-like compounds. Physical Chemistry Chemical Physics, 2016, 18, 1838-1845.	2.8	32

#	Article	IF	CITATIONS
73	Potentialâ€Assisted DNA Immobilization as a Prerequisite for Fast and Controlled Formation of DNA Monolayers. Angewandte Chemie - International Edition, 2015, 54, 15064-15068.	13.8	53
74	Nickel Hexacyanoferrate as Suitable Alternative to Ag for Electrochemical Lithium Recovery. ChemSusChem, 2015, 8, 2514-2519.	6.8	90
75	In-operando evaluation of the effect of vinylene carbonate on the insulating character of the solid electrolyte interphase. Electrochemistry Communications, 2015, 58, 1-5.	4.7	36
76	Assessment on the use of the amorphous semiconductor theory for the analysis of oxide films. Electrochimica Acta, 2015, 179, 460-468.	5.2	5
77	Intermodulated non-linear analysis of a redox couple in solution. 1. The model. Electrochimica Acta, 2015, 176, 1484-1491.	5.2	6
78	Effect of the mass transport limitations on the stability window of electrolytes for metal-ion batteries. Electrochimica Acta, 2015, 167, 262-267.	5.2	12
79	Scanning Electrochemical Microscopy Applied to the Investigation of Lithium (Deâ€) Insertion in TiO ₂ . Electroanalysis, 2015, 27, 1017-1025.	2.9	33
80	Analysis and Mitigation of Electrochemical Impedance Spectroscopy Artefacts in Four-Electrode Cells: Experimental Aspects. ChemElectroChem, 2015, 2, 1031-1035.	3.4	2
81	Analysis and Mitigation of Electrochemical Impedance Spectroscopy Artefacts in Fourâ€Electrode Cells: Model and Simulations. ChemElectroChem, 2015, 2, 970-975.	3.4	1
82	Determination of the formation and range of stability of the SEI on glassy carbon by local electrochemistry. RSC Advances, 2015, 5, 31166-31171.	3.6	52
83	Wet Nanoindentation of the Solid Electrolyte Interphase on Thin Film Si Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 23554-23563.	8.0	39
84	Combined AFM/SECM Investigation of the Solid Electrolyte Interphase in Liâ€lon Batteries. ChemElectroChem, 2015, 2, 1607-1611.	3.4	38
85	Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries. Journal of Power Sources, 2015, 297, 140-148.	7.8	20
86	Solid electrolyte interphase in semi-solid flow batteries: a wolf in sheep's clothing. Chemical Communications, 2015, 51, 14973-14976.	4.1	36
87	Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.	4.0	4
88	Intermodulated non-linear analysis of a redox couple in solution. 2. Experimental results. Electrochimica Acta, 2015, 176, 1492-1499.	5.2	7
89	An Aqueous Zinc″on Battery Based on Copper Hexacyanoferrate. ChemSusChem, 2015, 8, 481-485.	6.8	607
90	Electrochemical Characterization of Gel Electrolytes for Aqueous Lithiumâ€lon Batteries. ChemPlusChem, 2014, 79, 1507-1511.	2.8	19

#	Article	IF	CITATIONS
91	New Insights into SEI Formation in Lithium Ion Batteries: Inhomogeneous Distribution of Irreversible Charge Losses Across Graphite Electrodes. ECS Transactions, 2014, 62, 265-271.	0.5	2
92	Selectivity of a Lithiumâ€Recovery Process Based on LiFePO ₄ . Chemistry - A European Journal, 2014, 20, 9888-9891.	3.3	101
93	Vertical Distribution of Overpotentials and Irreversible Charge Losses in Lithium Ion Battery Electrodes. ChemSusChem, 2014, 7, 2159-2166.	6.8	18
94	Analysis and mitigation of the artefacts in electrochemical impedance spectroscopy due to three-electrode geometry. Electrochimica Acta, 2014, 135, 133-138.	5.2	50
95	Characterization of Ta–Ti Thin Films by using a Scanning Droplet Cell in Combination with AC Linear Sweep Voltammetry. ChemElectroChem, 2014, 1, 903-908.	3.4	7
96	Effect of Electrochemical Cell Design on the Ionic Conductivity and Oxygen Permeability Determination of Gas Separators. Electrochimica Acta, 2014, 127, 153-158.	5.2	3
97	Aging effects of anatase TiO2 nanoparticles in Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 7939.	2.8	14
98	Impact of the Specific Surface Area on the Memory Effect in Liâ€lon Batteries: The Case of Anatase TiO ₂ . Advanced Energy Materials, 2014, 4, 1400829.	19.5	33
99	Optimization of primary printed batteries based on Zn/MnO2. Journal of Power Sources, 2014, 261, 356-362.	7.8	32
100	Reliable benchmark material for anatase TiO2 in Li-ion batteries: On the role of dehydration of commercial TiO2. Journal of Power Sources, 2014, 266, 155-161.	7.8	24
101	Effect of surface topography on the anodization of titanium. Electrochemistry Communications, 2013, 37, 91-95.	4.7	19
102	FEM modelling of a coaxial three-electrode test cell for electrochemical impedance spectroscopy in lithium ion batteries. Journal of Power Sources, 2013, 240, 273-280.	7.8	45
103	Reliable reference electrodes for lithium-ion batteries. Electrochemistry Communications, 2013, 31, 141-144.	4.7	105
104	In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. Chemical Communications, 2013, 49, 9347.	4.1	93
105	Oxidation processes on conducting carbon additives for lithium-ion batteries. Journal of Applied Electrochemistry, 2013, 43, 1-7.	2.9	42
106	Threeâ€dimensional pore structure and ion conductivity of porous ceramic diaphragms. AICHE Journal, 2013, 59, 1446-1457.	3.6	52
107	Nonlinear Analysis: The Intermodulated Differential Immittance Spectroscopy. Analytical Chemistry, 2013, 85, 6799-6805.	6.5	8
108	Kinetic and Thermodynamic Hysteresis Imposed by Intercalation of Proflavine in Ferroceneâ€Modified Double‧tranded DNA. ChemPhysChem, 2013, 14, 2208-2216.	2.1	8

#	Article	IF	CITATIONS
109	A permeation model for the electrochemical interface. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074006.	2.0	5
110	Ammoniaâ€Annealed TiO ₂ as a Negative Electrode Material in Liâ€Ion Batteries: N Doping or Oxygen Deficiency?. Chemistry - A European Journal, 2013, 19, 14194-14199.	3.3	39
111	Dielectric Properties of Al-Nb Amorphous Mixed Oxides. ECS Journal of Solid State Science and Technology, 2013, 2, N205-N210.	1.8	21
112	Electrochemical Characterization of Porous Diaphragms in Development for Gas Separation. ECS Electrochemistry Letters, 2012, 1, F25-F28.	1.9	11
113	The importance of cell geometry for electrochemical impedance spectroscopy in three-electrode lithium ion battery test cells. Electrochemistry Communications, 2012, 22, 120-123.	4.7	81
114	A Desalination Battery. Nano Letters, 2012, 12, 839-843.	9.1	404
115	Batteries for lithium recovery from brines. Energy and Environmental Science, 2012, 5, 9487.	30.8	196
116	Utilization of the catalyst layer of dimensionally stable anodes—Interplay of morphology and active surface area. Electrochimica Acta, 2012, 82, 408-414.	5.2	49
117	Electromechanical coupling in anodic niobium oxide: Electric field-induced strain, internal stress, and dielectric response. Journal of Applied Physics, 2012, 111, 113529.	2.5	10
118	Dynamic Response of Thinâ€Film Semiconductors to AC Voltage Perturbations. ChemPhysChem, 2012, 13, 2910-2918.	2.1	8
119	Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries. Electrochemistry Communications, 2012, 15, 10-13.	4.7	44
120	Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells. Electrochemistry Communications, 2012, 19, 81-84.	4.7	37
121	Lead–lead fluoride reference electrode. Electrochemistry Communications, 2012, 20, 145-148.	4.7	8
122	Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochimica Acta, 2012, 65, 22-29.	5.2	26
123	Impact of Single Basepair Mismatches on Electronâ€Transfer Processes at Fcâ€PNAâ‹DNA Modified Gold Surfaces. ChemPhysChem, 2012, 13, 131-139.	2.1	13
124	Synthesis of Nanoscale Lithium-Ion Battery Cathode Materials Using a Porous Polymer Precursor Method. Journal of the Electrochemical Society, 2011, 158, A1079.	2.9	9
125	Batteries for Efficient Energy Extraction from a Water Salinity Difference. Nano Letters, 2011, 11, 1810-1813.	9.1	302
126	Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ionics, 2011, 192, 289-292.	2.7	72

#	Article	IF	CITATIONS
127	Lithiumâ€lon Textile Batteries with Large Areal Mass Loading. Advanced Energy Materials, 2011, 1, 1012-1017.	19.5	230
128	Mechanistic Studies of Fcâ€PNA(â <dna) based="" dynamics="" electronâ€transfer<br="" kinetics="" of="" on="" surface="" the="">Processes. Chemistry - A European Journal, 2011, 17, 9678-9690.</dna)>	3.3	22
129	A new AC-SECM mode. Electrochemistry Communications, 2011, 13, 689-693.	4.7	14
130	Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. Journal of Power Sources, 2011, 196, 1273-1278.	7.8	11
131	Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A352.	2.9	42
132	A critical assessment of the Mott-Schottky analysis for the characterisation of passive film-electrolyte junctions. Russian Journal of Electrochemistry, 2010, 46, 1306-1322.	0.9	61
133	Aqueous supercapacitors on conductive cotton. Nano Research, 2010, 3, 452-458.	10.4	197
134	A new approach to glucose sensing at gold electrodes. Electrochemistry Communications, 2010, 12, 1407-1410.	4.7	19
135	Mechanism of glucose electrochemical oxidation on gold surface. Electrochimica Acta, 2010, 55, 5561-5568.	5.2	257
136	Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano, 2010, 4, 5843-5848.	14.6	785
137	Physicochemical Characterization of Thermally Aged Anodic Films on Magnetron-Sputtered Niobium. Journal of the Electrochemical Society, 2010, 157, C258.	2.9	22
138	Stretchable, Porous, and Conductive Energy Textiles. Nano Letters, 2010, 10, 708-714.	9.1	1,415
139	A Multiple Working Electrode for Electrochemical Cells: A Tool for Current Density Distribution Studies. Angewandte Chemie - International Edition, 2009, 48, 528-532.	13.8	42
140	Electrode engineering of nanoparticles for lithium-ion batteries—Role of dispersion technique. Journal of Power Sources, 2009, 189, 590-593.	7.8	59
141	Quantification of Oxygen Loss from Li[sub 1+x](Ni[sub 1/3]Mn[sub 1/3]Co[sub 1/3])[sub 1â^'x]O[sub 2] at High Potentials by Differential Electrochemical Mass Spectrometry. Journal of the Electrochemical Society, 2009, 156, A823.	2.9	56
142	Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21490-21494.	7.1	1,138
143	Carbon nanofiber supercapacitors with large areal capacitances. Applied Physics Letters, 2009, 95, .	3.3	123

144 Electrochemical Stress at High Potential to Investigate Phase Transitions in Li[sub 1.1](Ni[sub) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

Fabio La Mantia

#	Article	IF	CITATIONS
145	Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy. Modern Aspects of Electrochemistry, 2009, , 231-316.	0.2	19
146	The Influence of Thermal Treatment on the Electronic Properties of a-Nb2O5. ECS Transactions, 2009, 19, 411-422.	0.5	3
147	Direct evidence of oxygen evolution from Li1+x (Ni1/3Mn1/3Co1/3)1â^'x O2 at high potentials. Journal of Applied Electrochemistry, 2008, 38, 893-896.	2.9	73
148	Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries. Electrochimica Acta, 2008, 53, 4109-4121.	5.2	67
149	Synthesis of Tetrahedral LiFeO ₂ and Its Behavior as a Cathode in Rechargeable Lithium Batteries. Journal of the American Chemical Society, 2008, 130, 3554-3559.	13.7	74
150	Online Detection of Reductive CO[sub 2] Development at Graphite Electrodes in the 1 M LiPF[sub 6], EC:DMC Battery Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, A84.	2.2	38
151	Recent advances on physico-chemical characterization of passive films by EIS and differential admittance techniques. Corrosion Science, 2007, 49, 186-194.	6.6	11
152	Amorphous semiconducting passive film-electrolyte junctions revisited. The influence of a non homogeneous density of state on the differential admittance behaviour of anodic a-Nb2O5. , 2006, , 343-348.		3
153	Physicochemical characterization of passive films on niobium by admittance and electrochemical impedance spectroscopy studies. Electrochimica Acta, 2005, 50, 5090-5102.	5.2	46
154	Statistical Analysis of the Measurement Noise in Dynamic Impedance Spectra. ChemElectroChem, 0, , .	3.4	0