Fabio La Mantia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313767/publications.pdf

Version: 2024-02-01

154 papers 10,383 citations

57758 44 h-index 99 g-index

160 all docs

 $\begin{array}{c} 160 \\ \\ \text{docs citations} \end{array}$

times ranked

160

12081 citing authors

#	Article	IF	CITATIONS
1	Stretchable, Porous, and Conductive Energy Textiles. Nano Letters, 2010, 10, 708-714.	9.1	1,415
2	Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21490-21494.	7.1	1,138
3	Thin, Flexible Secondary Li-Ion Paper Batteries. ACS Nano, 2010, 4, 5843-5848.	14.6	785
4	An Aqueous Zinc″on Battery Based on Copper Hexacyanoferrate. ChemSusChem, 2015, 8, 481-485.	6.8	607
5	A Desalination Battery. Nano Letters, 2012, 12, 839-843.	9.1	404
6	Batteries for Efficient Energy Extraction from a Water Salinity Difference. Nano Letters, 2011, 11, 1810-1813.	9.1	302
7	Mechanism of glucose electrochemical oxidation on gold surface. Electrochimica Acta, 2010, 55, 5561-5568.	5. 2	257
8	Lithiumâ€ion Textile Batteries with Large Areal Mass Loading. Advanced Energy Materials, 2011, 1, 1012-1017.	19.5	230
9	Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nature Communications, 2022, 13, 687.	12.8	200
10	Electrochemical Methods for Lithium Recovery: A Comprehensive and Critical Review. Advanced Materials, 2020, 32, e1905440.	21.0	198
11	Aqueous supercapacitors on conductive cotton. Nano Research, 2010, 3, 452-458.	10.4	197
12	Batteries for lithium recovery from brines. Energy and Environmental Science, 2012, 5, 9487.	30.8	196
13	An electrochemical investigation of the aging of copper hexacyanoferrate during the operation in zinc-ion batteries. Electrochimica Acta, 2016, 222, 74-83.	5. 2	189
14	Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives. Current Opinion in Electrochemistry, 2020, 21, 84-92.	4.8	177
15	Carbon nanofiber supercapacitors with large areal capacitances. Applied Physics Letters, 2009, 95, .	3.3	123
16	Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries. Energy Storage Materials, 2019, 19, 360-369.	18.0	112
17	Reliable reference electrodes for lithium-ion batteries. Electrochemistry Communications, 2013, 31, 141-144.	4.7	105
18	The effect of polyethyleneimine as an electrolyte additive on zinc electrodeposition mechanism in aqueous zinc-ion batteries. Electrochimica Acta, 2017, 258, 703-708.	5. 2	102

#	Article	IF	Citations
19	Selectivity of a Lithiumâ€Recovery Process Based on LiFePO ₄ . Chemistry - A European Journal, 2014, 20, 9888-9891.	3.3	101
20	In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy. Chemical Communications, 2013, 49, 9347.	4.1	93
21	Optimized Lithium Recovery from Brines by using an Electrochemical Ionâ€Pumping Process Based on λâ€MnO ₂ and Nickel Hexacyanoferrate. ChemElectroChem, 2017, 4, 143-149.	3.4	92
22	Nickel Hexacyanoferrate as Suitable Alternative to Ag for Electrochemical Lithium Recovery. ChemSusChem, 2015, 8, 2514-2519.	6.8	90
23	Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination, 2018, 428, 29-39.	8.2	87
24	The importance of cell geometry for electrochemical impedance spectroscopy in three-electrode lithium ion battery test cells. Electrochemistry Communications, 2012, 22, 120-123.	4.7	81
25	Phase transformation of copper hexacyanoferrate (KCuFe(CN)6) during zinc insertion: Effect of co-ion intercalation. Journal of Power Sources, 2018, 400, 167-171.	7.8	80
26	Space-Charge Effects at the Li ₇ La ₃ Zr ₂ O ₁₂ /Poly(ethylene oxide) Interface. ACS Applied Materials & Damp; Interfaces, 2019, 11, 11999-12007.	8.0	78
27	Synthesis of Tetrahedral LiFeO ₂ and Its Behavior as a Cathode in Rechargeable Lithium Batteries. Journal of the American Chemical Society, 2008, 130, 3554-3559.	13.7	74
28	Direct evidence of oxygen evolution from Li1+x (Ni1/3Mn1/3Co1/3)1 \hat{a} °x O2 at high potentials. Journal of Applied Electrochemistry, 2008, 38, 893-896.	2.9	73
29	Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ionics, 2011, 192, 289-292.	2.7	72
30	Layered double hydroxides as a suitable substrate to improve the efficiency of Zn anode in neutral pH Zn-ion batteries. Electrochemistry Communications, 2016 , 68 , $1-4$.	4.7	71
31	Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries. Electrochimica Acta, 2008, 53, 4109-4121.	5. 2	67
32	A critical assessment of the Mott-Schottky analysis for the characterisation of passive film-electrolyte junctions. Russian Journal of Electrochemistry, 2010, 46, 1306-1322.	0.9	61
33	Electrode engineering of nanoparticles for lithium-ion batteries—Role of dispersion technique. Journal of Power Sources, 2009, 189, 590-593.	7.8	59
34	Impedance Spectroscopy Analysis of the Lithium Ion Transport through the Li ₇ La ₃ Zr ₂ O ₁₂ /P(EO) ₂₀ Li Interface. Journal of the Electrochemical Society, 2017, 164, A2298-A2303.	2.9	58
35	Quantification of Oxygen Loss from Li[sub $1+x$](Ni[sub $1/3$]Mn[sub $1/3$]Co[sub $1/3$])[sub $1\hat{a}^{\alpha}x$]O[sub 2] at High Potentials by Differential Electrochemical Mass Spectrometry. Journal of the Electrochemical Society, 2009, 156, A823.	2.9	56
36	Lithium recovery from diluted brine by means of electrochemical ion exchange in a flow-through-electrodes cell. Desalination, 2020, 475, 114192.	8.2	55

3

#	Article	IF	CITATIONS
37	Potentialâ€Assisted DNA Immobilization as a Prerequisite for Fast and Controlled Formation of DNA Monolayers. Angewandte Chemie - International Edition, 2015, 54, 15064-15068.	13.8	53
38	Threeâ€dimensional pore structure and ion conductivity of porous ceramic diaphragms. AICHE Journal, 2013, 59, 1446-1457.	3.6	52
39	Determination of the formation and range of stability of the SEI on glassy carbon by local electrochemistry. RSC Advances, 2015, 5, 31166-31171.	3. 6	52
40	Solid Electrolyte Interphase (SEI) at TiO ₂ Electrodes in Li-Ion Batteries: Defining <i>Apparent</i> and <i>Effective</i> SEI Based on Evidence from X-ray Photoemission Spectroscopy and Scanning Electrochemical Microscopy. ACS Applied Materials & Defining Electrochemical Microscopy.	8.0	52
41	Analysis and mitigation of the artefacts in electrochemical impedance spectroscopy due to three-electrode geometry. Electrochimica Acta, 2014, 135, 133-138.	5.2	50
42	Utilization of the catalyst layer of dimensionally stable anodesâ€"Interplay of morphology and active surface area. Electrochimica Acta, 2012, 82, 408-414.	5.2	49
43	Physicochemical characterization of passive films on niobium by admittance and electrochemical impedance spectroscopy studies. Electrochimica Acta, 2005, 50, 5090-5102.	5.2	46
44	Characterising lithium-ion electrolytes via operando Raman microspectroscopy. Nature Communications, 2021, 12, 4053.	12.8	46
45	FEM modelling of a coaxial three-electrode test cell for electrochemical impedance spectroscopy in lithium ion batteries. Journal of Power Sources, 2013, 240, 273-280.	7.8	45
46	Tailoring of CNT surface oxygen groups by gas-phase oxidation and its implications for lithium ion batteries. Electrochemistry Communications, 2012, 15, 10-13.	4.7	44
47	A Multiple Working Electrode for Electrochemical Cells: A Tool for Current Density Distribution Studies. Angewandte Chemie - International Edition, 2009, 48, 528-532.	13.8	42
48	Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A352.	2.9	42
49	Oxidation processes on conducting carbon additives for lithium-ion batteries. Journal of Applied Electrochemistry, 2013, 43, 1-7.	2.9	42
50	Intercalation into a Prussian Blue Derivative from Solutions Containing Two Species of Cations. ChemPhysChem, 2017, 18, 917-925.	2.1	41
51	What is the trigger for the hydrogen evolution reaction? $\hat{a} \in \text{``towards}$ electrocatalysis beyond the Sabatier principle. Physical Chemistry Chemical Physics, 2020, 22, 8768-8780.	2.8	41
52	Ammoniaâ€Annealed TiO ₂ as a Negative Electrode Material in Liâ€Ion Batteries: N Doping or Oxygen Deficiency?. Chemistry - A European Journal, 2013, 19, 14194-14199.	3.3	39
53	Wet Nanoindentation of the Solid Electrolyte Interphase on Thin Film Si Electrodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23554-23563.	8.0	39
54	Online Detection of Reductive CO[sub 2] Development at Graphite Electrodes in the 1 M LiPF[sub 6], EC:DMC Battery Electrolyte. Electrochemical and Solid-State Letters, 2008, 11, A84.	2.2	38

#	Article	IF	Citations
55	Combined AFM/SECM Investigation of the Solid Electrolyte Interphase in Liâ€lon Batteries. ChemElectroChem, 2015, 2, 1607-1611.	3.4	38
56	Dynamic impedance spectroscopy using dynamic multi-frequency analysis: A theoretical and experimental investigation. Electrochimica Acta, 2017, 246, 553-563.	5.2	38
57	Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells. Electrochemistry Communications, 2012, 19, 81-84.	4.7	37
58	In-operando evaluation of the effect of vinylene carbonate on the insulating character of the solid electrolyte interphase. Electrochemistry Communications, 2015, 58, 1-5.	4.7	36
59	Solid electrolyte interphase in semi-solid flow batteries: a wolf in sheep's clothing. Chemical Communications, 2015, 51, 14973-14976.	4.1	36
60	Lithium recovery by means of electrochemical ion pumping: a comparison between salt capturing and selective exchange. Journal of Physics Condensed Matter, 2016, 28, 114005.	1.8	35
61	Influence of Hydrodynamics on the Lithium Recovery Efficiency in an Electrochemical Ion Pumping Separation Process. Journal of the Electrochemical Society, 2017, 164, E586-E595.	2.9	35
62	Impact of the Specific Surface Area on the Memory Effect in Li″on Batteries: The Case of Anatase TiO ₂ . Advanced Energy Materials, 2014, 4, 1400829.	19.5	33
63	Scanning Electrochemical Microscopy Applied to the Investigation of Lithium (Deâ€)Insertion in TiO ₂ . Electroanalysis, 2015, 27, 1017-1025.	2.9	33
64	Optimization of primary printed batteries based on Zn/MnO2. Journal of Power Sources, 2014, 261, 356-362.	7.8	32
65	Capturing Cd(<scp>ii</scp>) and Pb(<scp>ii</scp>) from contaminated water sources by electro-deposition on hydrotalcite-like compounds. Physical Chemistry Chemical Physics, 2016, 18, 1838-1845.	2.8	32
66	Irreversible Structural Changes of Copper Hexacyanoferrate Used as a Cathode in Znâ€ion Batteries. Chemistry - A European Journal, 2020, 26, 4917-4922.	3.3	31
67	Solid–Electrolyte Interphase at Positive Electrodes in Highâ€Energy Liâ€Ion Batteries: Current Understanding and Analytical Tools. Batteries and Supercaps, 2020, 3, 672-697.	4.7	30
68	Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis. Energy and Environmental Science, 2021, 14, 1057-1082.	30.8	28
69	Determination of the Flat Band Potential of Nanoparticles in Porous Electrodes by Blocking the Substrate–Electrolyte Contact. Journal of Physical Chemistry C, 2018, 122, 2796-2805.	3.1	27
70	Influence of surface functional groups on lithium ion intercalation of carbon cloth. Electrochimica Acta, 2012, 65, 22-29.	5.2	26
71	On the physical definition of dynamic impedance: How to design an optimal strategy for data extraction. Electrochimica Acta, 2019, 304, 513-520.	5.2	26
72	Expanding the lifetime of Li-ion batteries through optimization of charging profiles. Journal of Cleaner Production, 2019, 225, 928-938.	9.3	26

#	Article	IF	Citations
73	On the Analysis of Nonâ€stationary Impedance Spectra. Electroanalysis, 2016, 28, 2346-2353.	2.9	25
74	Electrochemical and Morphological Characterization of Znâ^'Alâ^'Cu Layered Double Hydroxides as a Negative Electrode in Aqueous Zincâ€lon Batteries. ChemElectroChem, 2018, 5, 2073-2079.	3.4	25
75	Reliable benchmark material for anatase TiO2 in Li-ion batteries: On the role of dehydration of commercial TiO2. Journal of Power Sources, 2014, 266, 155-161.	7.8	24
76	Comparison between cyclic voltammetry and differential charge plots from galvanostatic cycling. Journal of Electroanalytical Chemistry, 2019, 847, 113170.	3.8	24
77	Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies. Renewable Energy, 2019, 133, 1034-1045.	8.9	23
78	Physicochemical Characterization of Thermally Aged Anodic Films on Magnetron-Sputtered Niobium. Journal of the Electrochemical Society, 2010, 157, C258.	2.9	22
79	Mechanistic Studies of Fcâ€PNA(â‹DNA) Surface Dynamics Based on the Kinetics of Electronâ€√ransfer Processes. Chemistry - A European Journal, 2011, 17, 9678-9690.	3.3	22
80	Self-discharge in Li-ion aqueous batteries: A case study on LiMn2O4. Electrochimica Acta, 2021, 373, 137847.	5.2	22
81	Dielectric Properties of Al-Nb Amorphous Mixed Oxides. ECS Journal of Solid State Science and Technology, 2013, 2, N205-N210.	1.8	21
82	Effect of Current Density and Mass Loading on the Performance of a Flow-Through Electrodes Cell for Lithium Recovery. Journal of the Electrochemical Society, 2019, 166, E286-E292.	2.9	21
83	Extracting the kinetic parameters of the hydrogen evolution reaction at Pt in acidic media by means of dynamic multi-frequency analysis. Electrochimica Acta, 2019, 308, 328-336.	5. 2	21
84	Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries. Journal of Power Sources, 2015, 297, 140-148.	7.8	20
85	Synthesis of nanostructured LiMn ₂ O ₄ thin films by glancing angle deposition for Li-ion battery applications. Nanotechnology, 2016, 27, 455402.	2.6	20
86	Revealing the electronic character of the positive electrode/electrolyte interface in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 28381-28387.	2.8	20
87	Balancing costs, safety and CO2 emissions in the design of hydrogen supply chains. Computers and Chemical Engineering, 2019, 129, 106493.	3.8	20
88	Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy. Modern Aspects of Electrochemistry, 2009, , 231-316.	0.2	19
89	A new approach to glucose sensing at gold electrodes. Electrochemistry Communications, 2010, 12, 1407-1410.	4.7	19
90	Effect of surface topography on the anodization of titanium. Electrochemistry Communications, 2013, 37, 91-95.	4.7	19

#	Article	IF	Citations
91	Electrochemical Characterization of Gel Electrolytes for Aqueous Lithiumâ€lon Batteries. ChemPlusChem, 2014, 79, 1507-1511.	2.8	19
92	Investigations on morphological and electrochemical changes of all-solid-state thin film battery cells under dynamic mechanical stress conditions. Nano Energy, 2019, 57, 549-557.	16.0	19
93	Vertical Distribution of Overpotentials and Irreversible Charge Losses in Lithium Ion Battery Electrodes. ChemSusChem, 2014, 7, 2159-2166.	6.8	18
94	The Amorphous Semiconductor Schottky Barrier Approach to Study the Electronic Properties of Anodic Films on Ti. Journal of the Electrochemical Society, 2017, 164, C516-C525.	2.9	17
95	Microstructural Changes of Prussian Blue Derivatives during Cycling in Zincâ€Containing Electrolytes. ChemElectroChem, 2020, 7, 3301-3310.	3.4	17
96	Effect of Pt and Au current collector in LiMn ₂ O ₄ thin film for micro-batteries. Nanotechnology, 2018, 29, 035404.	2.6	16
97	Thermally Regenerable Redox Flow Battery. ChemSusChem, 2020, 13, 5460-5467.	6.8	16
98	Thermally Regenerable Redox Flow Battery for Exploiting Low-Temperature Heat Sources. Cell Reports Physical Science, 2020, 1, 100056.	5.6	16
99	Double Flame-Fabricated High-Performance AlPO ₄ /LiMn ₂ O ₄ Cathode Material for Li-lon Batteries. ACS Applied Energy Materials, 2021, 4, 4428-4443.	5.1	16
100	Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO ₂ upon hydrogen annealing. Chemical Communications, 2016, 52, 11524-11526.	4.1	15
101	Heat recovery in energy production from low temperature heat sources. AICHE Journal, 2019, 65, 980-991.	3.6	15
102	A new AC-SECM mode. Electrochemistry Communications, 2011, 13, 689-693.	4.7	14
103	Aging effects of anatase TiO2 nanoparticles in Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 7939.	2.8	14
104	Cell Design for Electrochemical Characterizations of Metal-Ion Batteries in Organic and Aqueous Electrolyte. Analytical Chemistry, 2016, 88, 7916-7920.	6.5	14
105	Impact of Single Basepair Mismatches on Electronâ€Transfer Processes at Fcâ€PNAâ‹DNA Modified Gold Surfaces. ChemPhysChem, 2012, 13, 131-139.	2.1	13
106	Dynamic Impedance Spectroscopy of Nickel Hexacyanoferrate Thin Films. ChemElectroChem, 2019, 6, 5387-5395.	3.4	13
107	Effect of the reactants concentration on the synthesis and cycle life of copper hexacyanoferrate for aqueous Zn-ion batteries. Electrochemistry Communications, 2021, 126, 107030.	4.7	13
108	Highly Efficient, Dendriteâ€Free Zinc Electrodeposition in Mild Aqueous Zincâ€Ion Batteries through Indiumâ€Based Substrates. Batteries and Supercaps, 2022, 5, .	4.7	13

#	Article	IF	CITATIONS
109	Electrochemical Stress at High Potential to Investigate Phase Transitions in Li[sub 1.1](Ni[sub) Tj ETQq1 1 0.7843	314 rgBT /C 2.2	Dyerlock 10
110	Effect of the mass transport limitations on the stability window of electrolytes for metal-ion batteries. Electrochimica Acta, 2015, 167, 262-267.	5.2	12
111	Dynamic impedance spectroscopy of LiMn2O4 thin films made by multi-layer pulsed laser deposition. Electrochimica Acta, 2020, 331, 135385.	5. 2	12
112	Recent advances on physico-chemical characterization of passive films by EIS and differential admittance techniques. Corrosion Science, 2007, 49, 186-194.	6.6	11
113	Optimizing operating conditions and electrochemical characterization of glucose–gluconate alkaline fuel cells. Journal of Power Sources, 2011, 196, 1273-1278.	7.8	11
114	Electrochemical Characterization of Porous Diaphragms in Development for Gas Separation. ECS Electrochemistry Letters, 2012, 1, F25-F28.	1.9	11
115	Electromechanical coupling in anodic niobium oxide: Electric field-induced strain, internal stress, and dielectric response. Journal of Applied Physics, 2012, 111, 113529.	2.5	10
116	Estimation and correction of instrument artefacts in dynamic impedance spectra. Scientific Reports, 2021, 11, 1362.	3.3	10
117	Synthesis of Nanoscale Lithium-Ion Battery Cathode Materials Using a Porous Polymer Precursor Method. Journal of the Electrochemical Society, 2011, 158, A1079.	2.9	9
118	Dynamic Response of Thinâ€Film Semiconductors to AC Voltage Perturbations. ChemPhysChem, 2012, 13, 2910-2918.	2.1	8
119	Lead–lead fluoride reference electrode. Electrochemistry Communications, 2012, 20, 145-148.	4.7	8
120	Nonlinear Analysis: The Intermodulated Differential Immittance Spectroscopy. Analytical Chemistry, 2013, 85, 6799-6805.	6.5	8
121	Kinetic and Thermodynamic Hysteresis Imposed by Intercalation of Proflavine in Ferroceneâ€Modified Doubleâ€Stranded DNA. ChemPhysChem, 2013, 14, 2208-2216.	2.1	8
122	Electrochemical Methods for Exploiting Lowâ€√emperature Heat Sources: Challenges in Material Research. Advanced Energy Materials, 2022, 12, .	19.5	8
123	Characterization of Ta–Ti Thin Films by using a Scanning Droplet Cell in Combination with AC Linear Sweep Voltammetry. ChemElectroChem, 2014, 1, 903-908.	3.4	7
124	Intermodulated non-linear analysis of a redox couple in solution. 2. Experimental results. Electrochimica Acta, 2015, 176, 1492-1499.	5.2	7
125	Coupling the Charging Current and the Electronâ€Transfer Process: The Effect on Impedance Spectra. ChemElectroChem, 2017, 4, 122-129.	3.4	7
126	Electro-oxidation of p-silicon in fluoride-containing electrolyte: a physical model for the regime of negative differential resistance. European Physical Journal: Special Topics, 2019, 227, 2641-2658.	2.6	7

#	Article	IF	Citations
127	Recent advances in reactor design and control for lithium recovery by means of electrochemical ion pumping. Current Opinion in Electrochemistry, 2022, 35, 101089.	4.8	7
128	Intermodulated non-linear analysis of a redox couple in solution. 1. The model. Electrochimica Acta, 2015, 176, 1484-1491.	5.2	6
129	Capacitive mixing and mixing entropy battery. , 2016, , 181-218.		6
130	Insights into the Transport and Thermodynamic Properties of a Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte for Battery Applications. Journal of Physical Chemistry Letters, 2022, 13, 1734-1741.	4.6	6
131	A permeation model for the electrochemical interface. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074006.	2.0	5
132	Assessment on the use of the amorphous semiconductor theory for the analysis of oxide films. Electrochimica Acta, 2015, 179, 460-468.	5.2	5
133	Capacitive Energy Extraction From Double Layer Expansion (CDLE). Fundamentals of the Method. Interface Science and Technology, 2018, , 87-117.	3.3	5
134	Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.	4.0	4
135	Measurement and Analysis of Dynamic Impedance Spectra Acquired During the Oscillatory Electrodissolution of p‶ype Silicon in Fluorideâ€Containing Electrolytes. ChemElectroChem, 2018, 5, 1548-1551.	3.4	4
136	Statistical Analysis of the Measurement Noise in Dynamic Impedance Spectra. ChemElectroChem, 2022, 9, .	3.4	4
137	The Influence of Thermal Treatment on the Electronic Properties of a-Nb2O5. ECS Transactions, 2009, 19, 411-422.	0.5	3
138	Effect of Electrochemical Cell Design on the Ionic Conductivity and Oxygen Permeability Determination of Gas Separators. Electrochimica Acta, 2014, 127, 153-158.	5.2	3
139	Amorphous semiconducting passive film-electrolyte junctions revisited. The influence of a non homogeneous density of state on the differential admittance behaviour of anodic a-Nb2O5. , 2006, , 343-348.		3
140	New Insights into SEI Formation in Lithium Ion Batteries: Inhomogeneous Distribution of Irreversible Charge Losses Across Graphite Electrodes. ECS Transactions, 2014, 62, 265-271.	0.5	2
141	Analysis and Mitigation of Electrochemical Impedance Spectroscopy Artefacts in Four-Electrode Cells: Experimental Aspects. ChemElectroChem, 2015, 2, 1031-1035.	3.4	2
142	Differential Capacitance Measurements on Passive Films. , 2018, , 75-92.		2
143	Dynamic Impedance Spectroscopy of Nickel Hexacyanoferrate Thin Films. ChemElectroChem, 2019, 6, 5353-5353.	3.4	2
144	Statistical Analysis of the Measurement Noise in Dynamic Impedance Spectra. ChemElectroChem, 2022, 9, .	3.4	2

#	Article	IF	CITATIONS
145	Analysis and Mitigation of Electrochemical Impedance Spectroscopy Artefacts in Fourâ€Electrode Cells: Model and Simulations. ChemElectroChem, 2015, 2, 970-975.	3.4	1
146	(Invited) Characterization of Thin Passive Film-Electrolyte Junctions. The Amorphous Semiconductor (a-SC) Schottky Barrier Approach. ECS Transactions, 2017, 75, 29-45.	0.5	1
147	Balancing Costs, Safety and CO2 Emissions in the Design of Hydrogen Supply Chains. Computer Aided Chemical Engineering, 2018, 43, 603-608.	0.5	1
148	Electrochemical and Morphological Characterization of Znâ^'Alâ^'Cu Layered Double Hydroxides as a Negative Electrode in Aqueous Zincâ€ion Batteries. ChemElectroChem, 2018, 5, 2054-2054.	3.4	1
149	Electric Field Modulation of Silicon upon Tethering of Highly Charged Nucleic Acids. Capacitive Studies on DNAâ€modified Silicon (111). Electroanalysis, 2016, 28, 2367-2372.	2.9	O
150	Frontispiece: Irreversible Structural Changes of Copper Hexacyanoferrate Used as a Cathode in Znâ€lon Batteries. Chemistry - A European Journal, 2020, 26, .	3.3	0
151	Model-based Optimization of Battery Energy Storage Systems. Computer Aided Chemical Engineering, 2017, , 2563-2568.	0.5	O
152	Li7La3Zr2O12-PEO Composite Electrolytes and the Role of Interface Resistance. ECS Meeting Abstracts, 2019, , .	0.0	0
153	A New Method for Measuring Transference Number Using Raman Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-01, 278-278.	0.0	0
154	Statistical Analysis of the Measurement Noise in Dynamic Impedance Spectra. ChemElectroChem, 0, , .	3.4	0