Marko Brankatschk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/131376/publications.pdf

Version: 2024-02-01

933447 996975 1,088 17 10 15 citations g-index h-index papers 27 27 27 1616 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In Vivo Analysis of Pathways Regulating Epithelial and Using Drosophila. Methods in Molecular Biology, 2022, 2438, 323-344.	0.9	O
2	Local problems need global solutions: The metabolic needs of regenerating organisms. Wound Repair and Regeneration, 2022, 30, 652-664.	3.0	0
3	Dllp7-Producing Neurons Regulate Insulin-Producing Cells in Drosophila. Frontiers in Physiology, 2021, 12, 630390.	2.8	6
4	How to use the development of individual Drosophila larvae as a metabolic sensor. Journal of Insect Physiology, 2020, 126, 104095.	2.0	3
5	Selective Phosphorylation of Akt/Protein-Kinase B Isoforms in Response to Dietary Cues. Frontiers in Cell and Developmental Biology, 2019, 7, 206.	3.7	7
6	Rabâ€mediated trafficking in the secondary cells of <i>Drosophila</i> male accessory glands and its role in fecundity. Traffic, 2019, 20, 137-151.	2.7	16
7	Rabs on the fly: Functions of Rab GTPases during development. Small GTPases, 2019, 10, 89-98.	1.6	9
8	Crumbs organizes the transport machinery by regulating apical levels of PI(4,5)P2 in Drosophila. ELife, 2019, 8, .	6.0	14
9	A Temperature-Dependent Switch in Feeding Preference Improves Drosophila Development and Survival in the Cold. Developmental Cell, 2018, 46, 781-793.e4.	7.0	61
10	Hedgehog Signaling Strength Is Orchestrated by the <i>mir-310 </i> Cluster of MicroRNAs in Response to Diet. Genetics, 2016, 202, 1167-1183.	2.9	33
11	Staccato/Unc-13-4 controls secretory lysosome-mediated lumen fusion during epithelial tubeÂanastomosis. Nature Cell Biology, 2016, 18, 727-739.	10.3	42
12	Endogenously Tagged Rab Proteins: A Resource to Study Membrane Trafficking in Drosophila. Developmental Cell, 2015, 33, 351-365.	7.0	159
13	Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling. ELife, 2014, 3, .	6.0	81
14	Effects of diet and development on the <i>Drosophila</i> lipidome. Molecular Systems Biology, 2012, 8, 600.	7.2	240
15	Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition. PLoS Genetics, 2012, 8, e1002828.	3.5	209
16	Systematic Discovery of Rab GTPases with Synaptic Functions in Drosophila. Current Biology, 2011, 21, 1704-1715.	3.9	122
17	Lipoprotein Particles Cross the Blood–Brain Barrier in <i>Drosophila</i> . Journal of Neuroscience, 2010, 30, 10441-10447.	3.6	84