Yu Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313345/publications.pdf

Version: 2024-02-01

124	3,993	30	58
papers	citations	h-index	g-index
125	125	125	3319
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Adhesion and friction in gecko toe attachment and detachment. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19320-19325.	7.1	546
2	Tribological properties of oleic acid-modified graphene as lubricant oil additives. Journal Physics D: Applied Physics, 2011, 44, 205303.	2.8	232
3	Peel-Zone Model of Tape Peeling Based on the Gecko Adhesive System. Journal of Adhesion, 2007, 83, 383-401.	3.0	159
4	Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces. Friction, 2013, 1, 114-129.	6.4	137
5	Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015, 6, 8949.	12.8	124
6	Adhesion and Friction Force Coupling of Gecko Setal Arrays:  Implications for Structured Adhesive Surfaces. Langmuir, 2008, 24, 1517-1524.	3.5	106
7	Controllable Anisotropic Dry Adhesion in Vacuum: Gecko Inspired Wedged Surface Fabricated with Ultraprecision Diamond Cutting. Advanced Functional Materials, 2017, 27, 1606576.	14.9	95
8	Stick-slip behaviours of water lubrication polymer materials under low speed conditions. Tribology International, 2017, 106, 55-61.	5.9	91
9	Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants. ACS Applied Materials & Discrete Samp; Interfaces, 2016, 8, 32440-32449.	8.0	88
10	Controllable Interfacial Adhesion Applied to Transfer Light and Fragile Objects by Using Gecko Inspired Mushroom-Shaped Pillar Surface. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10137-10144.	8.0	86
11	Biomimetic Bidirectional Switchable Adhesive Inspired by the Gecko. Advanced Functional Materials, 2014, 24, 574-579.	14.9	86
12	Probing Non-Gaussianity in Confined Diffusion of Nanoparticles. Journal of Physical Chemistry Letters, 2016, 7, 514-519.	4.6	84
13	Frictional Adhesion of Patterned Surfaces and Implications for Gecko and Biomimetic Systems. Langmuir, 2009, 25, 7486-7495.	3.5	75
14	Gecko adhesion pad: a smart surface?. Journal of Physics Condensed Matter, 2009, 21, 464132.	1.8	72
15	A shear thickening phenomenon in magnetic field controlled-dipolar suspensions. Applied Physics Letters, 2010, 97, .	3.3	68
16	Structure Parameter of Electrorheological Fluids in Shear Flow. Langmuir, 2011, 27, 5814-5823.	3.5	67
17	Recent developments in gecko-inspired dry adhesive surfaces from fabrication to application. Surface Topography: Metrology and Properties, 2019, 7, 023001.	1.6	59
18	Progresses on the theory and application of quartz crystal microbalance. Applied Physics Reviews, 2016, 3, 031106.	11.3	58

#	Article	IF	Citations
19	State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5638-5644.	8.0	58
20	Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores. Nano Letters, 2017, 17, 5199-5205.	9.1	56
21	Adhesion and Detachment Mechanisms between Polymer and Solid Substrate Surfaces: Using Polystyrene–Mica as a Model System. Macromolecules, 2016, 49, 5223-5231.	4.8	54
22	Discretely Supported Dry Adhesive Film Inspired by Biological Bending Behavior for Enhanced Performance on a Rough Surface. ACS Applied Materials & Enterfaces, 2017, 9, 7752-7760.	8.0	47
23	Bridging nanocontacts to macroscale gecko adhesion by sliding soft lamellar skin supported setal array. Scientific Reports, 2013, 3, 1382.	3.3	45
24	Research Progress in Application of 2D Materials in Liquid-Phase Lubrication System. Materials, 2018, 11, 1314.	2.9	44
25	Effect of Imidazolium Ionic Liquid Additives on Lubrication Performance of Propylene Carbonate under Different Electrical Potentials. Tribology Letters, 2014, 56, 161-169.	2.6	42
26	Reversible shear thickening at low shear rates of electrorheological fluids under electric fields. Physical Review E, 2011, 83, 011401.	2.1	39
27	Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores. Biophysical Journal, 2017, 112, 674-682.	0.5	39
28	An experimental study on the normal stress of magnetorheological fluids. Smart Materials and Structures, 2011, 20, 085012.	3.5	37
29	Vibration and Noise Behaviors During Stick–Slip Friction. Tribology Letters, 2019, 67, 1.	2.6	34
30	Diffusion of Nanoparticles with Activated Hopping in Crowded Polymer Solutions. Nano Letters, 2020, 20, 3895-3904.	9.1	34
31	Tribological properties of liquid-metal galinstan as novel additive in lithium grease. Tribology International, 2018, 128, 181-189.	5.9	32
32	A glimpse of superb tribological designs in nature. Biotribology, 2015, 1-2, 11-23.	1.9	31
33	Effects of pH on shear thinning and thickening behaviors of fumed silica suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 464, 1-7.	4.7	31
34	Friction at the Liquid/Liquid Interface of Two Immiscible Polymer Films. Langmuir, 2009, 25, 4954-4964.	3.5	30
35	Response Characteristics of the Potential-Controlled Friction of ZrO2/Stainless Steel Tribopairs in Sodium Dodecyl Sulfate Aqueous Solutions. Tribology Letters, 2010, 38, 169-178.	2.6	30
36	Potential-Controlled Boundary Lubrication of Stainless Steels in Non-aqueous Sodium Dodecyl Sulfate Solutions. Tribology Letters, 2014, 53, 17-26.	2.6	29

#	Article	IF	Citations
37	Effect of concentration and addition of ions on the adsorption of sodium dodecyl sulfate on stainless steel surface in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 484, 408-415.	4.7	29
38	Elegant Shadow Making Tiny Force Visible for Water-Walking Arthropods and Updated Archimedes' Principle. Langmuir, 2016, 32, 10522-10528.	3.5	29
39	Friction Contribution to Bioinspired Mushroomâ€Shaped Dry Adhesives. Advanced Materials Interfaces, 2017, 4, 1700016.	3.7	29
40	Investigation of ultra-low friction between self-mated Si 3 N 4 in water after running-in. Tribology International, 2017, 115, 365-369.	5.9	29
41	Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 63-73.	4.9	29
42	Cactus-like double-shell structured SiO 2 @TiO 2 microspheres: Fabrication, electrorheological performances and microwave absorption. Journal of Industrial and Engineering Chemistry, 2017, 56, 203-211.	5.8	28
43	A novel comb-typed poly(oligo(ethylene glycol) methylether acrylate) as an excellent aqueous lubricant. Journal of Colloid and Interface Science, 2019, 539, 342-350.	9.4	27
44	Transient surface patterns during adhesion and coalescence of thin liquid films. Soft Matter, 2007, 3, 88-93.	2.7	26
45	Rectangle-capped and tilted micropillar array for enhanced anisotropic anti-shearing in biomimetic adhesion. Journal of the Royal Society Interface, 2015, 12, 20150090.	3.4	26
46	Rippled Polymer Surface Generated by Stick–Slip Friction. Langmuir, 2019, 35, 2878-2884.	3.5	26
47	Surface wettability effect on aqueous lubrication: Van der Waals and hydration force competition induced adhesive friction. Journal of Colloid and Interface Science, 2021, 599, 667-675.	9.4	25
48	Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon, 2012, 50, 5372-5379.	10.3	24
49	Three-dimensional topographies of water surface dimples formed by superhydrophobic water strider legs. Applied Physics Letters, 2016, 109, .	3.3	23
50	The Extended Peel Zone Model: Effect of Peeling Velocity. Journal of Adhesion, 2011, 87, 1045-1058.	3.0	22
51	Engineering the morphology of TiO2/carbon hybrids via oxidized Ti3C2Tx MXene and associated electrorheological activities. Chemical Engineering Journal, 2019, 378, 122170.	12.7	22
52	CuS Nanoparticle Additives for Enhanced Ester Lubricant Performance. ACS Applied Nano Materials, 2018, 1, 7060-7065.	5.0	21
53	Flexible adhesion control by modulating backing stiffness based on jamming of granular materials. Smart Materials and Structures, 2019, 28, 115023.	3 . 5	21
54	Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. IScience, 2020, 23, 101749.	4.1	20

#	Article	IF	CITATIONS
55	Adhesion and friction of an isolated gecko setal array: The effects of substrates and relative humidity. Biosurface and Biotribology, 2015, 1, 42-49.	1.5	18
56	Ultralow friction between cemented carbide and graphite in water using three-step ring-on-ring friction test. Wear, 2016, 352-353, 54-64.	3.1	18
57	Electric Potential-Controlled Interfacial Interaction between Gold and Hydrophilic/Hydrophobic Surfaces in Aqueous Solutions. Journal of Physical Chemistry C, 2018, 122, 22549-22555.	3.1	18
58	Functionally Graded Gecko Setae and the Biomimics with Robust Adhesion and Durability. ACS Applied Polymer Materials, 2020, 2, 2658-2666.	4.4	18
59	Synergistic lubricating effect of graphene/ionic liquid composite material used as an additive. Friction, 2021, 9, 1568-1579.	6.4	18
60	Transient Interfacial Patterns and Instabilities Associated with Liquid Film Adhesion and Spreading. Langmuir, 2007, 23, 6126-6135.	3. 5	17
61	Shear history effect of magnetorheological fluids. Smart Materials and Structures, 2015, 24, 105030.	3 . 5	17
62	Enhanced Adhesion of Mosquitoes to Rough Surfaces. ACS Applied Materials & Enhanced Rough Surfaces, 2017, 9, 24373-24380.	8.0	17
63	Extreme-Pressure Superlubricity of Polymer Solution Enhanced with Hydrated Salt Ions. Langmuir, 2020, 36, 6765-6774.	3 . 5	17
64	Electric Response of CuS Nanoparticle Lubricant Additives: The Effect of Crystalline and Amorphous Octadecylamine Surfactant Capping Layers. Langmuir, 2019, 35, 15825-15833.	3.5	16
65	Environmental atmosphere effect on lubrication performance of gallium-based liquid metal. Tribology International, 2020, 141, 105904.	5 . 9	16
66	Magnesium Silicate Hydroxide–MoS ₂ –Sb ₂ O ₃ Coating Nanomaterials for High-Temperature Superlubricity. ACS Applied Nano Materials, 2021, 4, 7097-7106.	5.0	16
67	Transient adhesion in a non-fully detached contact. Scientific Reports, 2018, 8, 6147.	3.3	15
68	Robust scalable reversible strong adhesion by gecko-inspired composite design. Friction, 2022, 10, 1192-1207.	6.4	15
69	Anti-electroviscous effect of near-surface 5CB liquid crystal and its boundary lubrication property. Rheologica Acta, 2012, 51, 267-277.	2.4	13
70	Modeling the response of a quartz crystal microbalance under nanoscale confinement and slip boundary conditions. Physical Chemistry Chemical Physics, 2015, 17, 7224-7231.	2.8	13
71	Viscous Force Retards Initial Droplet Spreading. Journal of Physical Chemistry C, 2017, 121, 22054-22059.	3.1	13
72	Propulsion Principles of Water Striders in Sculling Forward through Shadow Method. Journal of Bionic Engineering, 2018, 15, 516-525.	5.0	13

#	Article	IF	Citations
73	On Lubrication States after a Running-In Process in Aqueous Lubrication. Langmuir, 2019, 35, 15435-15443.	3.5	13
74	Potential-Controlled Boundary Lubrication Using MoS2 Additives in Diethyl Succinate. Tribology Letters, 2020, 68, 1.	2.6	13
75	Boundary layer viscosity of CNT-doped liquid crystals: effects of phase behavior. Rheologica Acta, 2013, 52, 939-947.	2.4	12
76	Stick-slip behavior of magnetorheological fluids in simple linear shearing mode. Rheologica Acta, 2015, 54, 859-867.	2.4	12
77	Frequency-independent viscoelasticity of carbonyl iron particle suspensions under a magnetic field. Smart Materials and Structures, 2017, 26, 054009.	3.5	12
78	Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal. Langmuir, 2021, 37, 3628-3636.	3.5	12
79	Magnetic field effect on apparent viscosity reducing of different crude oils at low temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127372.	4.7	12
80	Intermolecular and surface forces in atomic-scale manufacturing. International Journal of Extreme Manufacturing, 2022, 4, 022002.	12.7	11
81	Macroscale Light-Controlled Lubrication Enabled by Introducing Diarylethene Molecules in a Nanoconfinement. Langmuir, 2020, 36, 5820-5828.	3.5	10
82	Effect of base oil lubrication properties on magnetorheological fluids. Smart Materials and Structures, 2021, 30, 095011.	3.5	10
83	Flexible Control and Coupling of Adhesion and Friction of Gecko Setal Array During Sliding. Tribology Online, 2015, 10, 106-114.	0.9	9
84	Delivering quantum dots to lubricants: Current status and prospect. Friction, 2022, 10, 1751-1771.	6.4	9
85	Homogeneous interfacial water structure favors realizing a low-friction coefficient state. Journal of Colloid and Interface Science, 2022, 626, 324-333.	9.4	9
86	Contributions of lunate cells and wax crystals to the surface anisotropy of <i>Nepenthes </i> Slippery zone. Royal Society Open Science, 2018, 5, 180766.	2.4	8
87	Controlled Adhesion Anisotropy between Two Rectangular Grooved Surfaces. Advanced Materials Interfaces, 2018, 5, 1801268.	3.7	8
88	Active Control of Boundary Lubrication of Ceramic Tribo-Pairs in Sodium Dodecyl Sulfate Aqueous Solutions. Tribology Letters, 2021, 69, 1.	2.6	8
89	Nanorheology of liquid crystal thin films confined between interfaces with anisotropic molecular orientations. Microfluidics and Nanofluidics, 2015, 18, 1131-1138.	2.2	7
90	Superlow Wear Realizable Tribofilms from Lubricant Oil Containing Hydrothermally Synthesized Magnesium Silicate Hydroxide/Carbon Core–Shell Nanoplates. Langmuir, 2021, 37, 240-248.	3.5	7

#	Article	IF	Citations
91	Photorheological fluids of azobenzene polymers for lubrication regulation. Friction, 2022, 10, 1078-1090.	6.4	7
92	On-Line Feedback Control of Sliding Friction of Metals Lubricated by Adsorbed Boundary SDS Films. Lubricants, 2022, 10, 148.	2.9	7
93	Transient filamentous network structure of a colloidal suspension excited by stepwise electric fields. Physical Review E, 2007, 75, 011409.	2.1	6
94	Unexpected shear strength change in magnetorheological fluids. APL Materials, 2014, 2, 096102.	5.1	6
95	One-step preparation of TiO ₂ particles with controllable phase and morphology by plasma electrolysis. RSC Advances, 2017, 7, 39824-39832.	3.6	6
96	Quantification/mechanism of interfacial interaction modulated by electric potential in aqueous salt solution. Friction, 2021, 9, 513-523.	6.4	6
97	A Chemical Potential Equation for Modeling Triboelectrochemical Reactions on Solid–Liquid Interfaces. Frontiers in Chemistry, 2021, 9, 650880.	3.6	6
98	Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects. Smart Materials and Structures, 2021, 30, 115003.	3.5	6
99	Load Sharing Design of a Multi-legged Adaptable Gripper With Gecko-Inspired Controllable Adhesion. IEEE Robotics and Automation Letters, 2021, 6, 8482-8489.	5.1	6
100	Imaging dynamic three-dimensional traction stresses. Science Advances, 2022, 8, eabm0984.	10.3	6
101	Differences in Tribological Behaviors upon Switching Fixed and Moving Materials of Tribo-pairs including Metal and Polymer. Scientific Reports, 2017, 7, 13041.	3.3	5
102	Scaling magneto-rheology based on Newtonian and non-Newtonian host fluids. Smart Materials and Structures, 2018, 27, 105019.	3.5	5
103	Role of Interfacial Water and Applied Potential on Friction at ${\rm Au}(111)$ Surfaces. Frontiers in Mechanical Engineering, 2019, 5, .	1.8	5
104	Voltage-Assisted Tribofilm Formation of Sulfur- and Phosphorus-Free Organic Molybdenum Additive on Bearing Steel Surfaces in Industrial Base Oils. Tribology Letters, 2022, 70, 1.	2.6	5
105	Peanut shaped titanium oxide micro-particles achieved by cathode plasma electrolysis and their electrorheological characteristics. Smart Materials and Structures, 2018, 27, 115017.	3.5	4
106	Clumping Stability of Vertical Nanofibers on Surfaces. Langmuir, 2018, 34, 11629-11636.	3.5	4
107	A Shadow-Based Nano Scale Precision Force Sensor. IEEE Sensors Journal, 2019, 19, 2072-2078.	4.7	4
108	Fluffy Polyfluoroalkoxy Layer Produced by Air Plasma Spraying Based on "Grapeshot―Effect. Journal of Thermal Spray Technology, 2020, 29, 462-470.	3.1	4

#	Article	IF	Citations
109	Light-Controlled Friction by Carboxylic Azobenzene Molecular Self-Assembly Layers. Frontiers in Chemistry, 2021, 9, 707232.	3.6	4
110	Walking of spider on water surface studied from its leg shadows. Chinese Physics B, 2018, 27, 084702.	1.4	3
111	Fluid Property Effects on the Splashing in Teapot Effect. Journal of Physical Chemistry C, 2018, 122, 21411-21417.	3.1	3
112	Potential-Dependent Interfacial Frictional Behavior between Charged Microspheres and Gold in Aqueous Solutions. Journal of Physical Chemistry C, 2022, 126, 4555-4562.	3.1	3
113	Thinning of glycerol in the presence of multi-walled carbon nanotubes. Journal of Chemical Physics, 2019, 151, 054302.	3.0	2
114	Role of structural stiffness on the loading capacity of fibrillar adhesive composite. Extreme Mechanics Letters, 2020, 41, 101001.	4.1	2
115	Development of a nanoscale displacement sensor based on the shadow method. Applied Optics, 2022, 61, G9.	1.8	2
116	Nanofibers: Clumping Criteria of Vertical Nanofibers on Surfaces (Adv. Mater. Interfaces 5/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	1
117	Effect of Surface Roughness on the Stick-slip Behavior of Magnetic Field Controlled-dipolar Suspensions in Simple Linear Shear Mode. MATEC Web of Conferences, 2016, 67, 03032.	0.2	1
118	Paper-Like Visual Indicator Films for Harmful Hydrophilic Liquids and Vapors. ACS Applied Polymer Materials, 2021, 3, 4027-4034.	4.4	1
119	Influence of magnetic property of test plates on magneto-rheological behavior. Smart Materials and Structures, 2022, 31, 055015.	3.5	1
120	Dynamic Viscoelasticity of Electrorheological Fluids Under Enhanced Electric Field. Current Smart Materials, 2017, 2, .	0.5	0
121	Effects of square micro-pillar array porosity on the liquid motion of near surface layer*. Chinese Physics B, 2020, 29, 024702.	1.4	О
122	Fast Opticalâ€Thermal Responsive Intelligent Glass Realized by Hydrated Poly(N â€Isopropylacrylamide) Film. Macromolecular Materials and Engineering, 2021, 306, 2100272.	3.6	0
123	Friction Contrast of High-Purity Titanium in Microscale. Tribology Letters, 2021, 69, 1.	2.6	0
124	Influence of Adsorption Characteristics of Surfactants Sodium Dodecyl Sulfate and Aerosol–OT on Dynamic Process of Water-Based Lubrication. Lubricants, 2022, 10, 147.	2.9	0