Jessika Camaño

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1313188/publications.pdf

Version: 2024-02-01

1684188 2053705 7 130 5 5 citations g-index h-index papers 7 7 7 63 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A posteriori error analysis of a momentum conservative Banach spaces based mixed-FEM for the Navier–Stokes problem. Applied Numerical Mathematics, 2022, 176, 134-158.	2.1	5
2	Analysis of a momentum conservative <scp>mixedâ€FEM</scp> for the stationary <scp>Navier–Stokes</scp> problem. Numerical Methods for Partial Differential Equations, 2021, 37, 2895-2923.	3.6	18
3	Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo, 2018, 55, 1.	1.1	15
4	Analysis of an augmented mixed-FEM for the Navier-Stokes problem. Mathematics of Computation, 2016, 86, 589-615.	2.1	21
5	New fully-mixed finite element methods for the Stokes–Darcy coupling. Computer Methods in Applied Mechanics and Engineering, 2015, 295, 362-395.	6.6	48
6	Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electronic Transactions on Numerical Analysis, 0, 48, 114-130.	0.0	23
7	Divergenceâ€free finite elements for the numerical solution of a hydroelastic vibration problem. Numerical Methods for Partial Differential Equations, 0, , .	3.6	0