Alastair J Barr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311551/publications.pdf

Version: 2024-02-01

361413 526287 2,101 29 20 27 citations h-index g-index papers 31 31 31 3183 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	JoVE Methods Collection Highlights: Protein-Protein Interactions. Journal of Visualized Experiments, 2019, , .	0.3	O
2	Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. ELife, 2019, 8, .	6.0	33
3	The biochemical basis of disease. Essays in Biochemistry, 2018, 62, 619-642.	4.7	30
4	Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out?. Molecules, 2018, 23, 569.	3.8	28
5	Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice. Blood, 2018, 132, 1399-1412.	1.4	37
6	Automatic selection of molecular descriptors using random forest: Application to drug discovery. Expert Systems With Applications, 2017, 72, 151-159.	7.6	96
7	Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin. PLoS ONE, 2017, 12, e0184574.	2.5	3
8	Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry, 2014, 6, 1423-1437.	2.3	71
9	Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9710-9715.	7.1	219
10	Crystal Structures of ABL-Related Gene (ABL2) in Complex with Imatinib, Tozasertib (VX-680), and a Type I Inhibitor of the Triazole Carbothioamide Class. Journal of Medicinal Chemistry, 2011, 54, 2359-2367.	6.4	33
11	Receptor tyrosine phosphatase PTP \hat{I}^3 is a regulator of spinal cord neurogenesis. Molecular and Cellular Neurosciences, 2011, 46, 469-482.	2.2	11
12	Large-Scale Structural Analysis of Protein Tyrosine Phosphatases. , 2010, , 871-876.		0
13	Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Medicinal Chemistry, 2010, 2, 1563-1576.	2.3	236
14	HD-PTP Is a Catalytically Inactive Tyrosine Phosphatase Due to a Conserved Divergence in Its Phosphatase Domain. PLoS ONE, 2009, 4, e5105.	2.5	46
15	Large-Scale Structural Analysis of the Classical Human Protein Tyrosine Phosphatome. Cell, 2009, 136, 352-363.	28.9	421
16	Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34ÂkDa catalytic domain of human PTPN7. Biomolecular NMR Assignments, 2008, 2, 101-103.	0.8	10
17	MAPK-specific tyrosine phosphatases: new targets for drug discovery?. Trends in Pharmacological Sciences, 2006, 27, 525-530.	8.7	41
18	Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochemical Journal, 2006, 395, 483-491.	3.7	59

#	Article	IF	CITATIONS
19	Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-Ã resolution. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1132-1136.	2.6	14
20	The crystal structure of human receptor protein tyrosine phosphatase $\hat{l}^{_{2}}$ phosphatase domain 1. Protein Science, 2006, 15, 1500-1505.	7.6	17
21	Phospholipase C-Î ² 2 interacts with mitogen-activated protein kinase kinase 3. Biochemical and Biophysical Research Communications, 2002, 293, 647-652.	2.1	8
22	RGS4 Inhibits Platelet-Activating Factor Receptor Phosphorylation and Cellular Responsesâ€. Biochemistry, 2001, 40, 3583-3588.	2.5	12
23	Function and Regulation of Chemoattractant Receptors. Immunologic Research, 2000, 22, 271-280.	2.9	44
24	Identification of a Region at the N-Terminus of Phospholipase C-β3 That Interacts with G Protein βγ Subunitsâ€. Biochemistry, 2000, 39, 1800-1806.	2.5	42
25	Differential Coupling of the Sphingosine 1-Phosphate Receptors Edg-1, Edg-3, and H218/Edg-5 to the Gi, Gq, and G12 Families of Heterotrimeric G Proteins. Journal of Biological Chemistry, 1999, 274, 27351-27358.	3.4	300
26	Differential Regulation of Formyl Peptide and Platelet-activating Factor Receptors. Journal of Biological Chemistry, 1998, 273, 11012-11016.	3.4	55
27	Agonist-independent Activation of Gz by the 5-Hydroxytryptamine1A Receptor Co-expressed in Spodoptera frugiperda Cells. Journal of Biological Chemistry, 1997, 272, 32979-32987.	3.4	66
28	Reconstitution of Receptors and GTP-binding Regulatory Proteins (G Proteins) in Sf9 Cells. Journal of Biological Chemistry, 1997, 272, 2223-2229.	3.4	142
29	The presence of NK3 tachykinin receptors on rat uterus. European Journal of Pharmacology, 1991, 203, 287-290.	3.5	26