
Andrei Khlobystov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1311343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands. Coordination Chemistry Reviews, 2001, 222, 155-192.	18.8	1,129
2	High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano, 2011, 5, 2332-2339.	14.6	896
3	Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Society Reviews, 2006, 35, 637.	38.1	616
4	Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nature Communications, 2013, 4, 1687.	12.8	481
5	Direct transformation of graphene to fullerene. Nature Chemistry, 2010, 2, 450-453.	13.6	361
6	Molecules in Carbon Nanotubes. Accounts of Chemical Research, 2005, 38, 901-909.	15.6	312
7	Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nature Materials, 2011, 10, 687-692.	27.5	253
8	Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Materials, 2005, 4, 481-485.	27.5	245
9	Transmission electron microscopy at 20kV for imaging and spectroscopy. Ultramicroscopy, 2011, 111, 1239-1246.	1.9	178
10	Chemical reactions confined within carbon nanotubes. Chemical Society Reviews, 2016, 45, 4727-4746.	38.1	177
11	Carbon Nanotubes: From Nano Test Tube to Nano-Reactor. ACS Nano, 2011, 5, 9306-9312.	14.6	168
12	van der Waals Interactions between Nanotubes and Nanoparticles for Controlled Assembly of Composite Nanostructures. ACS Nano, 2010, 4, 4920-4928.	14.6	163
13	UV–vis absorption spectroscopy of carbon nanotubes: Relationship between the π-electron plasmon and nanotube diameter. Chemical Physics Letters, 2010, 493, 19-23.	2.6	155
14	Observation of Ordered Phases of Fullerenes in Carbon Nanotubes. Physical Review Letters, 2004, 92, 245507.	7.8	148
15	Encapsulation of single-molecule magnets in carbon nanotubes. Nature Communications, 2011, 2, 407.	12.8	147
16	Towards a fullerene-based quantum computer. Journal of Physics Condensed Matter, 2006, 18, S867-S883.	1.8	138
17	Size, Structure, and Helical Twist of Graphene Nanoribbons Controlled by Confinement in Carbon Nanotubes. ACS Nano, 2012, 6, 3943-3953.	14.6	134
18	Polycatenated copper(I) molecular ladders: a new structural motif in inorganic coordination polymers. Chemical Communications, 1997, , 2027-2028.	4.1	133

#	Article	IF	CITATIONS
19	Long-range chain orientation in 1-D co-ordination polymers as a function of anions and intermolecular aromatic interactions. Dalton Transactions RSC, 2000, , 4285-4291.	2.3	123
20	Anion exchange in co-ordination polymers: a solid-state or a solvent-mediated process?. CrystEngComm, 2002, 4, 426-431.	2.6	119
21	Chemical reactions inside single-walled carbon nano test-tubes. Chemical Communications, 2005, , 37.	4.1	118
22	Dynamic Equilibria in Solventâ€Mediated Anion, Cation and Ligand Exchange in Transitionâ€Metal Coordination Polymers: Solidâ€State Transfer or Recrystallisation?. Chemistry - A European Journal, 2009, 15, 8861-8873.	3.3	118
23	Harnessing the Synergistic and Complementary Properties of Fullerene and Transition-Metal Compounds for Nanomaterial Applications. Chemical Reviews, 2015, 115, 11301-11351.	47.7	118
24	The imitation game—a computational chemical approach to recognizing life. Nature Biotechnology, 2006, 24, 1203-1206.	17.5	113
25	Stereoselective Association of Binuclear Metallacycles in Coordination Polymers. Journal of the American Chemical Society, 2003, 125, 6753-6761.	13.7	106
26	Crystal engineering: the effects of π–π interactions in copper(i) and silver(i) complexes of 2,7-diazapyrene. Chemical Communications, 1997, , 1339-1340.	4.1	104
27	Twisted Aromatic Frameworks: Readily Exfoliable and Solutionâ€Processable Twoâ€Dimensional Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2017, 56, 6946-6951.	13.8	100
28	Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chemical Physics Letters, 2004, 386, 239-243.	2.6	95
29	Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids. Journal of Materials Chemistry, 2004, 14, 2852.	6.7	89
30	Selective host–guest interaction of single-walled carbon nanotubes with functionalised fullerenes. Chemical Communications, 2004, , 176-177.	4.1	85
31	Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale. Nature Chemistry, 2011, 3, 732-737.	13.6	83
32	Interactions and Reactions of Transition Metal Clusters with the Interior of Single-Walled Carbon Nanotubes Imaged at the Atomic Scale. Journal of the American Chemical Society, 2012, 134, 3073-3079.	13.7	83
33	Assembly, Growth, and Catalytic Activity of Gold Nanoparticles in Hollow Carbon Nanofibers. ACS Nano, 2012, 6, 2000-2007.	14.6	83
34	Controlled Assembly of Dinuclear Metallacycles into a Three-Dimensional Helical Array. Angewandte Chemie - International Edition, 2000, 39, 2317-2320.	13.8	81
35	Molybdenum Dioxide in Carbon Nanoreactors as a Catalytic Nanosponge for the Efficient Desulfurization of Liquid Fuels. Advanced Functional Materials, 2019, 29, 1808092.	14.9	81
36	Chemical Reactions of Molecules Promoted and Simultaneously Imaged by the Electron Beam in Transmission Electron Microscopy. Accounts of Chemical Research, 2017, 50, 1797-1807.	15.6	79

#	Article	IF	CITATIONS
37	Palladium nanoparticles on carbon nanotubes as catalysts of cross-coupling reactions. Journal of Materials Chemistry A, 2013, 1, 8737.	10.3	77
38	Host–Guest Hybrid Redox Materials Selfâ€Assembled from Polyoxometalates and Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2019, 31, e1904182.	21.0	77
39	Molecular Motion of Endohedral Fullerenes in Single-Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2004, 43, 1386-1389.	13.8	68
40	Carbon Nanotubes as Electrically Active Nanoreactors for Multi-Step Inorganic Synthesis: Sequential Transformations of Molecules to Nanoclusters and Nanoclusters to Nanoribbons. Journal of the American Chemical Society, 2016, 138, 8175-8183.	13.7	68
41	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 9941-9946.	13.8	65
42	Controlled orientation of ellipsoidal fullerene C70 in carbon nanotubes. Applied Physics Letters, 2004, 84, 792-794.	3.3	63
43	Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nature Nanotechnology, 2008, 3, 337-341.	31.5	63
44	A Wavy Two-Dimensional Covalent Organic Framework from Core-Twisted Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2019, 141, 14403-14410.	13.7	63
45	High-Nuclearity Metal–Organic Nanospheres: A Cd ₆₆ Ball. Journal of the American Chemical Society, 2012, 134, 55-58.	13.7	61
46	Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy. Scientific Reports, 2016, 6, 34474.	3.3	60
47	Synthesis, Characterization, and Application of Core–Shell Co _{0.16} Fe _{2.84} O ₄ @NaYF ₄ (Yb, Er) and Fe ₃ O ₄ @NaYF ₄ (Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT,) Tj ET	Qq1 ⁶ 1 0.7	84314 rgB ⁻
48	Extinction coefficient analysis of small alkanethiolate-stabilised gold nanoparticles. Chemical Physics Letters, 2008, 460, 230-236.	2.6	58
49	Extremely Stable Platinumâ€Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 9103-9108.	21.0	58
50	Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nature Chemistry, 2020, 12, 921-928.	13.6	58
51	An improved preparation of 4-ethynylpyridine and its application to the synthesis of linear bipyridyl ligands. Tetrahedron Letters, 1999, 40, 5413-5416.	1.4	54
52	The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon, 2006, 44, 2752-2757.	10.3	53
53	Nanoscale solid-state quantum computing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 1473-1485.	3.4	52
54	Controlled Assembly of Silver(I)â€Pyridylfullerene Networks. Angewandte Chemie - International Edition, 2007, 46, 8013-8016.	13.8	52

#	Article	IF	CITATIONS
55	Observations of Chemical Reactions at the Atomic Scale: Dynamics of Metalâ€Mediated Fullerene Coalescence and Nanotube Rupture. Angewandte Chemie - International Edition, 2010, 49, 193-196.	13.8	52
56	Toward Controlled Spacing in One-Dimensional Molecular Chains:Â Alkyl-Chain-Functionalized Fullerenes in Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 8609-8614.	13.7	51
57	Assembly of Cobalt Phthalocyanine Stacks inside Carbon Nanotubes. Advanced Materials, 2007, 19, 3312-3316.	21.0	51
58	Formation of uncapped nanometre-sized metal particles by decomposition of metal carbonyls in carbon nanotubes. Chemical Science, 2012, 3, 1919.	7.4	49
59	Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy. Scientific Reports, 2016, 6, 22440.	3.3	49
60	Comparison of the stability of multiwalled carbon nanotube dispersions in water. Physical Chemistry Chemical Physics, 2007, 9, 5490.	2.8	47
61	Azafullerenes Encapsulated within Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 6062-6063.	13.7	47
62	Controlling the Regioselectivity of the Hydrosilylation Reaction in Carbon Nanoreactors. Chemistry - A European Journal, 2012, 18, 13180-13187.	3.3	47
63	Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy. ACS Nano, 2017, 11, 2509-2520.	14.6	46
64	Functionalised endohedral fullerenes in single-walled carbon nanotubes. Chemical Communications, 2011, 47, 2116-2118.	4.1	45
65	Functionalized Fullerenes in Self-Assembled Monolayers. Langmuir, 2011, 27, 10977-10985.	3.5	45
66	Pauli spin blockade in carbon nanotube double quantum dots. Physical Review B, 2008, 77, .	3.2	40
67	Chemistry at the Nanoscale: Synthesis of an N@C ₆₀ –N@C ₆₀ Endohedral Fullerene Dimer. Angewandte Chemie - International Edition, 2012, 51, 3587-3590.	13.8	40
68	Click chemistry in carbon nanoreactors. Chemical Communications, 2013, 49, 1067.	4.1	40
69	Using microscopic techniques to reveal the mechanism of anion exchange in crystalline co-ordination polymers. Journal of Microscopy, 2004, 214, 261-271.	1.8	39
70	Isotope Substitution Extends the Lifetime of Organic Molecules in Transmission Electron Microscopy. Small, 2015, 11, 622-629.	10.0	39
71	Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Letters, 2018, 18, 498-504.	9.1	39
72	Structure–Activity Relationships of Benzenesulfonamideâ€Based Inhibitors towards Carbonic Anhydrase Isoform Specificity. ChemBioChem, 2017, 18, 213-222.	2.6	38

#	Article	IF	CITATIONS
73	Assembly, structure and electrical conductance of carbon nanotube–gold nanoparticle 2D heterostructures. Journal of Materials Chemistry, 2008, 18, 2249.	6.7	37
74	Multiâ€Electronâ€Acceptor Dyad and Triad Systems Based on Perylene Bisimides and Fullerenes. Chemistry - A European Journal, 2011, 17, 3759-3767.	3.3	36
75	Palladium nanoparticles in catalytic carbon nanoreactors: the effect of confinement on Suzuki–Miyaura reactions. Journal of Materials Chemistry A, 2015, 3, 3918-3927.	10.3	36
76	Transport and encapsulation of gold nanoparticles in carbon nanotubes. Nanoscale, 2010, 2, 1006.	5.6	35
77	Competitive hydrosilylation in carbon nanoreactors: probing the effect of nanoscale confinement on selectivity. Nanoscale, 2013, 5, 12200.	5.6	35
78	Producing nanotubes of biocompatible hydroxyapatite by continuous hydrothermal synthesis. CrystEngComm, 2013, 15, 3256.	2.6	35
79	Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts. Nature Communications, 2018, 9, 3382.	12.8	35
80	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, e202115619.	13.8	35
81	The Role of Molecular Clusters in the Filling of Carbon Nanotubes. ACS Nano, 2010, 4, 5203-5210.	14.6	34
82	A Piggyback Ride for Transition Metals: Encapsulation of Exohedral Metallofullerenes in Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 668-674.	3.3	34
83	N@C ₆₀ –Porphyrin: A Dyad of Two Radical Centers. Journal of the American Chemical Society, 2012, 134, 1938-1941.	13.7	34
84	Cerium Oxide Nanoparticles Inside Carbon Nanoreactors for Selective Allylic Oxidation of Cyclohexene. Nano Letters, 2020, 20, 1161-1171.	9.1	34
85	Inorganic-organic interpenetrating frameworks: 4,4'-bipyridine N,N'-dioxide as a bridging hydrogen-bond acceptor. Chemical Communications, 2001, , 2258-2259.	4.1	33
86	Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes. Physical Review B, 2005, 72, .	3.2	33
87	Regioselective control of aromatic halogenation reactions in carbon nanotube nanoreactors. Chemical Communications, 2013, 49, 5586.	4.1	33
88	Interactions and Chemical Transformations of Coronene Inside and Outside Carbon Nanotubes. Small, 2014, 10, 1369-1378.	10.0	33
89	4-Arylbenzenesulfonamides as Human Carbonic Anhydrase Inhibitors (hCAIs): Synthesis by Pd Nanocatalyst-Mediated Suzuki–Miyaura Reaction, Enzyme Inhibition, and X-ray Crystallographic Studies. Journal of Medicinal Chemistry, 2016, 59, 721-732.	6.4	33
90	Chiral graphene nanoribbon inside a carbon nanotube: ab initio study. Nanoscale, 2012, 4, 4522.	5.6	32

Andrei Khlobystov

#	Article	IF	CITATIONS
91	High-temperature molecular beam epitaxy of hexagonal boron nitride layers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	31
92	Imaging an unsupported metal–metal bond in dirhenium molecules at the atomic scale. Science Advances, 2020, 6, eaay5849.	10.3	30
93	Interactions of Gold Nanoparticles with the Interior of Hollow Graphitized Carbon Nanofibers. Small, 2012, 8, 1222-1228.	10.0	29
94	Magnetic shepherding of nanocatalysts through hierarchically-assembled Fe-filled CNTs hybrids. Applied Catalysis B: Environmental, 2018, 227, 356-365.	20.2	29
95	Nanoparticle-nanotube electrostatic interactions in solution: the effect of pH and ionic strength. Physical Chemistry Chemical Physics, 2010, 12, 10775.	2.8	28
96	A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chemical Science, 2013, 4, 2971.	7.4	28
97	Electron beam controlled covalent attachment of small organic molecules to graphene. Nanoscale, 2016, 8, 2711-2719.	5.6	28
98	Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfactant solution. Carbon, 2005, 43, 1151-1155.	10.3	27
99	Electronic structure changes in cobalt phthalocyanine due to nanotube encapsulation probed using resonant inelastic X-ray scattering. Physical Chemistry Chemical Physics, 2010, 12, 9693.	2.8	27
100	Cleavage of the C–S bond with the formation of a binuclear copper complex with 2-thiolato-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-one. A new mimic of the active site of N2O reductase. Dalton Transactions, 2013, 42, 6290.	3.3	27
101	Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO ₂ . Chemical Communications, 2014, 50, 5200-5202.	4.1	27
102	Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale. Small, 2016, 12, 1649-1657.	10.0	27
103	Coating carbon nanotubes with polymer in supercritical carbon dioxide. Chemical Communications, 2006, , 1670.	4.1	26
104	Photoresponse in Self-Assembled Films of Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13004-13009.	3.1	24
105	Encapsulation of transition metal atoms into carbon nanotubes: a supramolecular approach. Chemical Communications, 2011, 47, 5696.	4.1	24
106	Formation of Nickel Clusters Wrapped in Carbon Cages: Toward New Endohedral Metallofullerene Synthesis. Nano Letters, 2017, 17, 1082-1089.	9.1	24
107	Assembly and Magnetic Bistability of Mn ₃ O ₄ Nanoparticles Encapsulated in Hollow Carbon Nanofibers. Angewandte Chemie - International Edition, 2013, 52, 2051-2054.	13.8	23
108	New Pathway for Heterogenization of Molecular Catalysts by Non-covalent Interactions with Carbon Nanoreactors. Chemistry of Materials, 2014, 26, 6461-6466.	6.7	23

#	Article	IF	CITATIONS
109	Encapsulation and IR Probing of Cube-Shaped Octasilasesquioxane H8Si8O12 in Carbon Nanotubes. Angewandte Chemie - International Edition, 2006, 45, 5188-5191.	13.8	22
110	High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	22
111	A one-pot-one-reactant synthesis of platinum compounds at the nanoscale. Nanoscale, 2017, 9, 14385-14394.	5.6	22
112	Synthesis and reactivity of N@C60O. Physical Chemistry Chemical Physics, 2006, 8, 2083.	2.8	21
113	Polyareneâ€Functionalized Fullerenes in Carbon Nanotubes: Towards Controlled Geometry of Molecular Chains. Small, 2008, 4, 2262-2270.	10.0	21
114	Investigation of fullerene encapsulation in carbon nanotubes using a complex approach based on vibrational spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2743-2745.	1.5	21
115	Twisted Aromatic Frameworks: Readily Exfoliable and Solutionâ€Processable Twoâ€Dimensional Conjugated Microporous Polymers. Angewandte Chemie, 2017, 129, 7050-7055.	2.0	21
116	Transport and TEM on dysprosium metallofullerene peapods. Physica Status Solidi (B): Basic Research, 2006, 243, 3430-3434.	1.5	20
117	Endohedral metallofullerenes in self-assembled monolayers. Physical Chemistry Chemical Physics, 2010, 12, 123-131.	2.8	20
118	Antagonistic Interactions between Benzo[a]pyrene and Fullerene (C60) in Toxicological Response of Marine Mussels. Nanomaterials, 2019, 9, 987.	4.1	20
119	Electrochemistry of redox-active molecules confined within narrow carbon nanotubes. Chemical Society Reviews, 2021, 50, 10895-10916.	38.1	20
120	The atomistic mechanism of carbon nanotube cutting catalyzed by nickel under an electron beam. Nanoscale, 2014, 6, 14877-14890.	5.6	19
121	Moiré-Modulated Conductance of Hexagonal Boron Nitride Tunnel Barriers. Nano Letters, 2018, 18, 4241-4246.	9.1	19
122	Photochemical stability of N@C60 and its pyrrolidine derivatives. Chemical Physics Letters, 2011, 508, 187-190.	2.6	18
123	Alignment of N@C ₆₀ Derivatives in a Liquid Crystal Matrix. Journal of Physical Chemistry B, 2013, 117, 5925-5931.	2.6	18
124	Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications. Nanoscale, 2015, 7, 20474-20488.	5.6	18
125	Direct Measurement of Electron Transfer in Nanoscale Host–Guest Systems: Metallocenes in Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 13540-13549.	3.3	18
126	Single-molecule imaging and kinetic analysis of intermolecular polyoxometalate reactions. Chemical Science, 2021, 12, 7377-7387.	7.4	18

#	Article	IF	CITATIONS
127	Nitrosation of arenes with nitrosonium ethyl sulfate. Russian Chemical Bulletin, 1999, 48, 506-509.	1.5	17
128	The effect of carbon nanotubes on chiral chemical reactions. Chemical Physics Letters, 2013, 557, 10-14.	2.6	17
129	Nanoscale engineering of hybrid magnetite–carbon nanofibre materials for magnetic resonance imaging contrast agents. Journal of Materials Chemistry C, 2017, 5, 2167-2174.	5.5	17
130	Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. Journal of Materials Chemistry A, 2017, 5, 21467-21477.	10.3	17
131	Sensitization, energy transfer and infra-red emission decay modulation in Yb3+-doped NaYF4 nanoparticles with visible light through a perfluoroanthraquinone chromophore. Scientific Reports, 2017, 7, 5066.	3.3	17
132	High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials, 2018, 11, 1119.	2.9	17
133	Magnetically Recyclable Catalytic Carbon Nanoreactors. Advanced Functional Materials, 2018, 28, 1802869.	14.9	17
134	Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer. Nanoscale, 2019, 11, 2848-2854.	5.6	17
135	Bond Dissociation and Reactivity of HF and H ₂ O in a Nano Test Tube. ACS Nano, 2020, 14, 11178-11189.	14.6	17
136	Electrostatic interactions for directed assembly of nanostructured materials: composites of titanium dioxide nanotubes with gold nanoparticles. Journal of Materials Chemistry, 2009, 19, 8928.	6.7	16
137	Growth of Carbon Nanotubes inside Boron Nitride Nanotubes by Coalescence of Fullerenes: Toward the World's Smallest Coaxial Cable. Small Methods, 2017, 1, 1700184.	8.6	16
138	An atomic carbon source for high temperature molecular beam epitaxy of graphene. Scientific Reports, 2017, 7, 6598.	3.3	16
139	Synthesis, X-ray crystallography and electrochemistry of three novel copper complexes with imidazole-containing hydantoin and thiohydantoins. Polyhedron, 2013, 63, 15-20.	2.2	15
140	Transition Metal Complexes of a Salen–Fullerene Diad: Redox and Catalytically Active Nanostructures for Delivery of Metals in Nanotubes. Chemistry - A European Journal, 2013, 19, 11999-12008.	3.3	15
141	Single-walled carbon nanotubes as nano-electrode and nano-reactor to control the pathways of a redox reaction. Chemical Communications, 2014, 50, 14338-14340.	4.1	15
142	Stabilising the lowest energy charge-separated state in a {metal chromophore – fullerene} assembly: a tuneable panchromatic absorbing donor–acceptor triad. Chemical Science, 2016, 7, 5908-5921.	7.4	15
143	Encapsulation of Cadmium Selenide Nanocrystals in Biocompatible Nanotubes: DFT Calculations, Xâ€ray Diffraction Investigations, and Confocal Fluorescence Imaging. ChemistryOpen, 2018, 7, 144-158.	1.9	15
144	Synthesis of hydroxylated group IV metal oxides inside hollow graphitised carbon nanofibers: nano-sponges and nanoreactors for enhanced decontamination of organophosphates. Journal of Materials Chemistry A, 2018, 6, 20444-20453.	10.3	15

#	Article	IF	CITATIONS
145	Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures. 2D Materials, 2021, 8, 034001.	4.4	15
146	Revealing Subsurface Vibrational Modes by Atom-Resolved Damping Force Spectroscopy. Physical Review Letters, 2009, 102, 195503.	7.8	14
147	Evaluating the Effects of Carbon Nanoreactor Diameter and Internal Structure on the Pathways of the Catalytic Hydrosilylation Reaction. Small, 2014, 10, 1866-1872.	10.0	14
148	Controlled oxidative cutting of carbon nanotubes catalysed by silver nanoparticles. Journal of Materials Chemistry C, 2014, 2, 8357-8363.	5.5	14
149	Direct Correlation of Carbon Nanotube Nucleation and Growth with the Atomic Structure of Rhenium Nanocatalysts Stimulated and Imaged by the Electron Beam. Nano Letters, 2018, 18, 6334-6339.	9.1	14
150	The effects of encapsulation on damage to molecules by electron radiation. Micron, 2019, 120, 96-103.	2.2	14
151	Step-flow growth of graphene-boron nitride lateral heterostructures by molecular beam epitaxy. 2D Materials, 2020, 7, 035014.	4.4	14
152	Understanding charge transport in wavy 2D covalent organic frameworks. Nanoscale, 2021, 13, 6829-6833.	5.6	14
153	An Expanded 2D Fused Aromatic Network with 90â€Ring Hexagons. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
154	Steric and Electronic Control of 1,3-Dipolar Cycloaddition Reactions in Carbon Nanotube Nanoreactors. Journal of Physical Chemistry C, 2019, 123, 6294-6302.	3.1	13
155	Reactions of Nitrosonium Ethyl Sulfate with Olefins and Dienes:Â An Experimental and Theoretical Study. Journal of Organic Chemistry, 1999, 64, 7121-7128.	3.2	12
156	Interactions of carbon nanotubes and gold nanoparticles: the effects of solvent dielectric constant and temperature on controlled assembly of superstructures. Dalton Transactions, 2014, 43, 7400.	3.3	12
157	Dynamics of Gold Nanoparticles on Carbon Nanostructures Driven by van der Waals and Electrostatic Interactions. Small, 2015, 11, 2756-2761.	10.0	12
158	Movement of palladium nanoparticles in hollow graphitised nanofibres: the role of migration and coalescence in nanocatalyst sintering during the Suzuki–Miyaura reaction. Nanoscale, 2018, 10, 19046-19051.	5.6	12
159	Blurring the boundary between homogenous and heterogeneous catalysis using palladium nanoclusters with dynamic surfaces. Nature Communications, 2021, 12, 4965.	12.8	12
160	Antagonistic cytoprotective effects of C60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. Science of the Total Environment, 2021, 755, 142355.	8.0	11
161	Atomic-resolution three-dimensional force and damping maps of carbon nanotube peapods. Nanotechnology, 2009, 20, 264001.	2.6	10
162	Organometallic and coordination chemistry of carbon nanomaterials. Dalton Transactions, 2014, 43, 7345.	3.3	10

#	Article	IF	CITATIONS
163	Direct Synthesis of Multiplexed Metalâ€Nanowireâ€Based Devices by Using Carbon Nanotubes as Vector Templates. Angewandte Chemie - International Edition, 2019, 58, 9928-9932.	13.8	10
164	Encapsulation of cobalt phthalocyanine molecules in carbon nanotubes. Journal of Physics: Conference Series, 2008, 100, 012017.	0.4	9
165	Fullerene-driven encapsulation of a luminescent Eu(iii) complex in carbon nanotubes. Nanoscale, 2014, 6, 2887.	5.6	9
166	Electronic Property Modification of Singleâ€Walled Carbon Nanotubes by Encapsulation of Sulfurâ€Terminated Graphene Nanoribbons. Small, 2014, 10, 5077-5086.	10.0	9
167	An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse †Trojan Horse' effects. Nanotoxicology, 2019, 13, 1324-1343.	3.0	9
168	Accurate EELS background subtraction – an adaptable method in MATLAB. Ultramicroscopy, 2020, 217, 113052.	1.9	9
169	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 10029-10034.	2.0	9
170	Triad and cyclic diad compounds of [60]fullerene with metallocenes. Dalton Transactions, 2013, 42, 5056.	3.3	8
171	Tuning the interactions between electron spins in fullerene-based triad systems. Beilstein Journal of Organic Chemistry, 2014, 10, 332-343.	2.2	8
172	Creating and testing carbon interfaces – integrating oligomeric phthalocyanines onto single walled carbon nanotubes. Faraday Discussions, 2014, 172, 61-79.	3.2	7
173	Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors. Nanoscale, 2016, 8, 11727-11737.	5.6	7
174	Influence of steel strength and loading mode on fatigue properties of resistance spot welded H beam components. Materials Science and Technology, 2004, 20, 1143-1150.	1.6	6
175	Copper(ii) coordination compounds as building blocks for the formation of gold nanoparticle dimers. Mendeleev Communications, 2011, 21, 129-131.	1.6	6
176	Engineering molecular chains in carbon nanotubes. Nanoscale, 2012, 4, 7540.	5.6	6
177	Ag-catalysed cutting of multi-walled carbon nanotubes. Nanotechnology, 2016, 27, 175604.	2.6	6
178	Formation of hollow carbon nanoshells from thiol stabilised silver nanoparticles via heat treatment. Carbon, 2018, 139, 538-544.	10.3	6
179	Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 4973-4984.	6.8	6
180	WS ₂ /MoS ₂ Heterostructures through Thermal Treatment of MoS ₂ Layers Electrostatically Functionalized with W ₃ S ₄ Molecular Clusters. Chemistry - A European Journal, 2020, 26, 6670-6678.	3.3	6

#	Article	IF	CITATIONS
181	An efficient route to the synthesis of symmetric and asymmetric diastereomerically pure fullerene triads. Tetrahedron, 2012, 68, 4976-4985.	1.9	5
182	Switching intermolecular interactions by confinement in carbon nanotubes. Chemical Communications, 2015, 51, 648-651.	4.1	5
183	Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters. Nanoscale, 2016, 8, 15079-15085.	5.6	5
184	Core–Shell NaHoF ₄ @TiO ₂ NPs: A Labeling Method to Trace Engineered Nanomaterials of Ubiquitous Elements in the Environment. ACS Applied Materials & Interfaces, 2019, 11, 19452-19461.	8.0	5
185	Imaging and analysis of covalent organic framework crystallites on a carbon surface: a nanocrystalline scaly COF/nanotube hybrid. Nanoscale, 2021, 13, 6834-6845.	5.6	5
186	Polaritonic Enhancement of Near-Field Scattering of Small Molecules Encapsulated in Boron Nitride Nanotubes: Chemical Reactions in Confined Spaces. ACS Applied Nano Materials, 2021, 4, 4335-4339.	5.0	5
187	A Fullerene–Platinum Complex for Direct Functional Patterning of Single Metal Atom-Embedded Carbon Nanostructures. Journal of Physical Chemistry Letters, 2022, 13, 1578-1586.	4.6	5
188	A new method for conjugate nitrosobromination of olefins. Russian Chemical Bulletin, 1998, 47, 191-192.	1.5	4
189	Transmission Electron Microscopy: Isotope Substitution Extends the Lifetime of Organic Molecules in Transmission Electron Microscopy (Small 5/2015). Small, 2015, 11, 510-510.	10.0	4
190	Direct Synthesis of Multiplexed Metalâ€Nanowireâ€Based Devices by Using Carbon Nanotubes as Vector Templates. Angewandte Chemie, 2019, 131, 10033-10037.	2.0	4
191	Wall―and Hybridisationâ€Selective Synthesis of Nitrogenâ€Doped Doubleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 10276-10280.	13.8	4
192	Piecing Together Large Polycyclic Aromatic Hydrocarbons and Fullerenes: A Combined ChemTEM Imaging and MALDI-ToF Mass Spectrometry Approach. Frontiers in Chemistry, 2021, 9, 700562.	3.6	4
193	Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes. Nano Research, O, , 1.	10.4	4
194	Magnetic nanoribbons with embedded cobalt grown inside single-walled carbon nanotubes. Nanoscale, 2022, 14, 1978-1989.	5.6	4
195	Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO ₂ Sorption and the Hydrosilylation of Phenylacetylene. ACS Applied Nano Materials, 2022, 5, 2075-2086.	5.0	4
196	Catalytic and non-catalytic roles of pendant groups in the decomposition of N@C60: a DFT investigation. Chemical Communications, 2012, 48, 5148.	4.1	3
197	The effects of interactions between proline and carbon nanostructures on organocatalysis in the Hajos–Parrish–Eder–Sauer–Wiechert reaction. Nanoscale, 2014, 6, 11141-11146.	5.6	3
198	Cloaking by π-electrons in the infrared. Physica Status Solidi (B): Basic Research, 2016, 253, 2457-2460.	1.5	3

#	Article	IF	CITATIONS
199	Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice. Angewandte Chemie - International Edition, 2020, 59, 22922-22927.	13.8	3
200	Influence of dissolution on the uptake of bimetallic nanoparticles Au@Ag-NPs in soil organism Eisenia fetida. Chemosphere, 2022, 302, 134909.	8.2	3
201	Comment on "Specific Raman Signatures of a Dimetallofullerene Peapodâ€: Physical Review Letters, 2004, 93, 269601.	7.8	2
202	New one-pot synthesis of ?-hydroxyaldehyde ethyl sulfates from terminal olefins. Russian Chemical Bulletin, 1996, 45, 1259-1260.	1.5	1
203	Inserting Fullerene Dimers into Carbon Nanotubes: Pushing the Boundaries of Molecular Self-assembly. AIP Conference Proceedings, 2004, , .	0.4	1
204	First example of the ring-opening transformation of thiazolidines to iminothiols on gold surface. Mendeleev Communications, 2009, 19, 92-93.	1.6	1
205	Electrocatalysis: Extremely Stable Platinumâ€Amorphous Carbon Electrocatalyst within Hollow Graphitized Carbon Nanofibers for the Oxygen Reduction Reaction (Adv. Mater. 41/2016). Advanced Materials, 2016, 28, 9231-9231.	21.0	1
206	Counting molecules in nano test tubes: a method for determining the activation parameters of thermally driven reactions through direct imaging. Chemical Communications, 2021, 57, 10628-10631.	4.1	1
207	Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem, 2021, 14, 4849.	6.8	1
208	Stabilization of Polyoxometalate Charge Carriers via Redoxâ€Driven Nanoconfinement in Singleâ€Walled Carbon Nanotubes. Angewandte Chemie, 2022, 134, .	2.0	1
209	Modification of the Band Gaps and Optical Properties of Single-Walled Carbon Nanotubes. AIP Conference Proceedings, 2005, , .	0.4	0
210	Transport and TEM on the same individual carbon nanotubes and peapods. AIP Conference Proceedings, 2005, , .	0.4	0
211	Analysis of few-nm sized metal nanoparticles on carbon nanostructures. Journal of Physics: Conference Series, 2012, 371, 012066.	0.4	0
212	In situ heating and tomography of gold nanoparticles on carbon structures. Journal of Physics: Conference Series, 2014, 522, 012073.	0.4	0
213	Interactions Between Nanoparticles and Carbon Nanotubes: Directing the Self-Assembly of One-Dimensional Superstructures. , 2019, , 219-236.		0
214	Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice. Angewandte Chemie, 2020, 132, 23122-23127.	2.0	0
215	Innentitelbild: Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice (Angew. Chem. 51/2020). Angewandte Chemie, 2020, 132, 22994-22994.	2.0	0
216	Graphene nanoribbons with incorporated Co atoms: Optical spectrum and magnetic response. AIP Conference Proceedings, 2021, , .	0.4	0

#	Article	IF	CITATIONS
217	Polyoxometalate Chemistry in Carbon Nanotubes. ECS Meeting Abstracts, 2018, , .	0.0	Ο
218	An Expanded 2D Fused Aromatic Network with 90â€Ring Hexagons. Angewandte Chemie, 0, , .	2.0	0
219	Understanding the Chemistry of Molecules in Nanotubes by Transmission Electron Microscopy. , 2008, , 113-114.		0