
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1310542/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Eigendecomposition-Precoded Faster-Than-Nyquist Signaling With Optimal Power Allocation in<br>Frequency-Selective Fading Channels. IEEE Transactions on Wireless Communications, 2022, 21,<br>1681-1693.                        | 9.2 | 5         |
| 2  | Reconfigurable Intelligent Surface Assisted Multi-Carrier Wireless Systems for Doubly Selective<br>High-Mobility Ricean Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 4023-4041.                               | 6.3 | 21        |
| 3  | QoS-Constrained Energy-Efficient Beamforming and Jamming With Intelligent Reflecting Surface for<br>Secure Multi-User Downlink. IEEE Transactions on Green Communications and Networking, 2022, 6,<br>187-197.                  | 5.5 | 2         |
| 4  | Reduced-Complexity FFT-Spread Multicarrier Faster-Than-Nyquist Signaling in Frequency-Selective Fading Channel. IEEE Open Journal of the Communications Society, 2022, 3, 530-542.                                              | 6.9 | 5         |
| 5  | Turbo Detection Aided Autoencoder for Multicarrier Wireless Systems: Integrating Deep Learning Into<br>Channel Coded Systems. IEEE Transactions on Cognitive Communications and Networking, 2022, 8,<br>600-614.                | 7.9 | 7         |
| 6  | Eigendecomposition-Precoded Faster-Than-Nyquist Signaling With Index Modulation. IEEE Transactions on Communications, 2022, 70, 4822-4836.                                                                                      | 7.8 | 4         |
| 7  | Error Probability Analysis for Time-Varying Chaos Unitary Matrix-Based Differential MIMO System. IEEE<br>Wireless Communications Letters, 2022, 11, 1399-1403.                                                                  | 5.0 | 0         |
| 8  | Secrecy Performance of Buffer-Aided Hybrid Virtual Full-Duplex and Half-Duplex Relay Activation. IEEE Open Journal of Vehicular Technology, 2022, 3, 344-355.                                                                   | 4.9 | 1         |
| 9  | Joint Beam and Polarization Forming of Intelligent Reflecting Surfaces for Wireless Communications.<br>IEEE Transactions on Vehicular Technology, 2021, 70, 1648-1657.                                                          | 6.3 | 22        |
| 10 | Hybrid NOMA/OMA Broadcasting-and-Buffer-State-Based Relay Selection. IEEE Transactions on Vehicular Technology, 2021, 70, 1618-1631.                                                                                            | 6.3 | 9         |
| 11 | QoS-Constrained Optimization of Intelligent Reflecting Surface Aided Secure Energy-Efficient Transmission. IEEE Transactions on Vehicular Technology, 2021, 70, 5137-5142.                                                      | 6.3 | 7         |
| 12 | Precoded Faster-than-Nyquist Signaling with Optimal Power Allocation in Frequency-Selective Channel. , 2021, , .                                                                                                                |     | 2         |
| 13 | Space-, Time- and Frequency-Domain Index Modulation for Next-Generation Wireless: A Unified<br>Single-/Multi-Carrier and Single-/Multi-RF MIMO Framework. IEEE Transactions on Wireless<br>Communications, 2021, 20, 3847-3864. | 9.2 | 7         |
| 14 | Eigenvalue Decomposition Precoded Faster-Than-Nyquist Transmission of Index Modulated Symbols. ,<br>2021, , .                                                                                                                   |     | 5         |
| 15 | Impact of Inter-Frame Interference on Eigendecomposition-Precoded Non-Orthogonal<br>Frequency-Division Multiplexing. IEEE Wireless Communications Letters, 2021, 10, 1567-1571.                                                 | 5.0 | 4         |
| 16 | Secrecy Performance of Eigendecomposition-Based FTN Signaling and NOFDM in Quasi-Static Fading Channels. IEEE Transactions on Wireless Communications, 2021, 20, 5872-5882.                                                     | 9.2 | 17        |
| 17 | Quantum Speedup for Index Modulation. IEEE Access, 2021, 9, 111114-111124.                                                                                                                                                      | 4.2 | 3         |
| 18 | The Evolution of Faster-Than-Nyquist Signaling. IEEE Access, 2021, 9, 86535-86564.                                                                                                                                              | 4.2 | 29        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Performance Analysis of Hybrid Buffer-Aided Cooperative Protocol Based on Half-Duplex and Virtual<br>Full-Duplex Relay Selections. IEEE Open Journal of the Communications Society, 2021, 2, 1862-1873.                     | 6.9  | 5         |
| 20 | Artificially Time-Varying Differential MIMO for Achieving Practical Physical Layer Security. IEEE Open<br>Journal of the Communications Society, 2021, 2, 2180-2194.                                                        | 6.9  | 6         |
| 21 | Optimal but Low-Complexity Optimization Method for Nonsquare Differential Massive MIMO. , 2021, , .                                                                                                                         |      | 1         |
| 22 | Variable-Block-Length Joint Channel Estimation and Data Detection for Spatial Modulation Over<br>Time-Varying Channels. IEEE Transactions on Vehicular Technology, 2020, 69, 13964-13969.                                   | 6.3  | 3         |
| 23 | Differentially-Encoded Rectangular Spatial Modulation Approaches the Performance of Its Coherent<br>Counterpart. IEEE Transactions on Communications, 2020, 68, 7593-7607.                                                  | 7.8  | 11        |
| 24 | Eigenvalue-Decomposition-Precoded Ultra-Dense Non-Orthogonal Frequency-Division Multiplexing.<br>IEEE Transactions on Wireless Communications, 2020, , 1-1.                                                                 | 9.2  | 8         |
| 25 | Tradeoff Between Calculation Precision and Information Rate in Eigendecomposition-Based<br>Faster-Than-Nyquist Signaling. IEEE Access, 2020, 8, 223461-223471.                                                              | 4.2  | 8         |
| 26 | Generalized Buffer-State-Based Relay Selection in Cooperative Cognitive Radio Networks. IEEE Access, 2020, 8, 11644-11657.                                                                                                  | 4.2  | 13        |
| 27 | Spatial Modulation. , 2020, , 1348-1353.                                                                                                                                                                                    |      | 0         |
| 28 | Effects of Eigenvalue Distribution on Precoded Faster-than-Nyquist Signaling with Power Allocation. , 2020, , .                                                                                                             |      | 1         |
| 29 | Non-Orthogonal Frequency-Division Multiplexing Based on Eigenvalue Decomposition. , 2020, , .                                                                                                                               |      | 0         |
| 30 | Energy-Versus-Bandwidth-Efficiency Tradeoff in Spatially Modulated Massive MIMO Downlink. IEEE<br>Wireless Communications Letters, 2019, 8, 197-200.                                                                        | 5.0  | 13        |
| 31 | Physical Layer Security in Buffer-State-Based Max-Ratio Relay Selection Exploiting Broadcasting With<br>Cooperative Beamforming and Jamming. IEEE Transactions on Information Forensics and Security, 2019,<br>14, 431-444. | 6.9  | 43        |
| 32 | Multicarrier Division Duplex Aided Millimeter Wave Communications. IEEE Access, 2019, 7, 100719-100732.                                                                                                                     | 4.2  | 8         |
| 33 | Differentially Modulated Spectrally Efficient Frequency-Division Multiplexing. IEEE Signal Processing<br>Letters, 2019, 26, 1046-1050.                                                                                      | 3.6  | 8         |
| 34 | "Near-Perfect―Finite-Cardinality Generalized Space-Time Shift Keying. IEEE Journal on Selected Areas in<br>Communications, 2019, 37, 2146-2164.                                                                             | 14.0 | 14        |
| 35 | SVD-Precoded Faster-Than-Nyquist Signaling With Optimal and Truncated Power Allocation. IEEE Transactions on Wireless Communications, 2019, 18, 5909-5923.                                                                  | 9.2  | 25        |
| 36 | Constant-Envelope Space-Time Shift Keying. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 1387-1402.                                                                                                       | 10.8 | 11        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | IMToolkit: An Open-Source Index Modulation Toolkit for Reproducible Research Based on Massively<br>Parallel Algorithms. IEEE Access, 2019, 7, 93830-93846.                                                                            | 4.2  | 7         |
| 38 | Subcarrier Subset Selection-Aided Transmit Precoding Achieves Full-Diversity in Index Modulation.<br>IEEE Transactions on Vehicular Technology, 2019, 68, 11031-11041.                                                                | 6.3  | 3         |
| 39 | Differential-Detection Aided Large-Scale Generalized Spatial Modulation is Capable of Operating in<br>High-Mobility Millimeter-Wave Channels. IEEE Journal on Selected Topics in Signal Processing, 2019, 13,<br>1360-1374.           | 10.8 | 26        |
| 40 | Buffer-Aided Virtual Full-Duplex Cooperative Networks Exploiting Source-to-Relay Broadcast Channels. , 2019, , .                                                                                                                      |      | 7         |
| 41 | Optimal and Suboptimal Power Allocation for SVD-Precoded Faster-than-Nyquist Signaling. , 2019, , .                                                                                                                                   |      | 1         |
| 42 | Antireflection Strategy for Near-Zero Refractive Index Photonic Crystals Applicable to an Element-by-Element Full-Rank Optical Wireless MIMO System. , 2019, , .                                                                      |      | 0         |
| 43 | Performance Evaluation of Generalized Buffer-State-Based Relay Selection in NOMA-Aided Downlink.<br>IEEE Access, 2019, 7, 173320-173328.                                                                                              | 4.2  | 11        |
| 44 | Sixty Years of Coherent Versus Non-Coherent Tradeoffs and the Road From 5G to Wireless Futures.<br>IEEE Access, 2019, 7, 178246-178299.                                                                                               | 4.2  | 49        |
| 45 | Performance Analysis and Constellation Optimization of Star-QAM-Aided Differential<br>Faster-Than-Nyquist Signaling. IEEE Signal Processing Letters, 2019, 26, 144-148.                                                               | 3.6  | 5         |
| 46 | Spectrally Efficient Frequency Division Multiplexing With Index-Modulated Non-Orthogonal Subcarriers. IEEE Wireless Communications Letters, 2019, 8, 233-236.                                                                         | 5.0  | 25        |
| 47 | Finite-Cardinality Single-RF Differential Space-Time Modulation for Improving the<br>Diversity-Throughput Tradeoff. IEEE Transactions on Communications, 2019, 67, 318-335.                                                           | 7.8  | 20        |
| 48 | Differential Faster-Than-Nyquist Signaling. IEEE Access, 2018, 6, 4199-4206.                                                                                                                                                          | 4.2  | 16        |
| 49 | Generalized Buffer-State-Based Relay Selection With Collaborative Beamforming. IEEE Transactions on Vehicular Technology, 2018, 67, 1245-1257.                                                                                        | 6.3  | 21        |
| 50 | Single-RF Index Shift Keying Aided Differential Space–Time Block Coding. IEEE Transactions on Signal<br>Processing, 2018, 66, 773-788.                                                                                                | 5.3  | 21        |
| 51 | 50 Years of Permutation, Spatial and Index Modulation: From Classic RF to Visible Light<br>Communications and Data Storage. IEEE Communications Surveys and Tutorials, 2018, 20, 1905-1938.                                           | 39.4 | 132       |
| 52 | Faster-Than-Nyquist Signaling with Differential Encoding and Non Coherent Detection. , 2018, , .                                                                                                                                      |      | 2         |
| 53 | Differential Space-Time Coding Dispensing With Channel Estimation Approaches the Performance of Its<br>Coherent Counterpart in the Open-Loop Massive MIMO-OFDM Downlink. IEEE Transactions on<br>Communications, 2018, 66, 6190-6204. | 7.8  | 20        |
| 54 | Low-Complexity Sphere Search-Based Adaptive Spatial Modulation. IEEE Transactions on Vehicular<br>Technology, 2018, 67, 7836-7840.                                                                                                    | 6.3  | 6         |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ordering- and Partitioning-Aided Sphere Decoding for Generalized Spatial Modulation. IEEE<br>Transactions on Vehicular Technology, 2018, 67, 10087-10091.                   | 6.3 | 7         |
| 56 | Spatial Modulation. , 2018, , 1-6.                                                                                                                                          |     | 0         |
| 57 | Full-Diversity Dispersion Matrices From Algebraic Field Extensions for Differential Spatial<br>Modulation. IEEE Transactions on Vehicular Technology, 2017, 66, 385-394.    | 6.3 | 41        |
| 58 | Rectangular Differential Spatial Modulation for Open-Loop Noncoherent Massive-MIMO Downlink.<br>IEEE Transactions on Wireless Communications, 2017, 16, 1908-1920.          | 9.2 | 43        |
| 59 | Two Decades of MIMO Design Tradeoffs and Reduced-Complexity MIMO Detection in Near-Capacity Systems. IEEE Access, 2017, 5, 18564-18632.                                     | 4.2 | 60        |
| 60 | Faster-Than-Nyquist Signaling With Index Modulation. IEEE Wireless Communications Letters, 2017, 6, 630-633.                                                                | 5.0 | 35        |
| 61 | Buffer-State-and-Thresholding-Based Amplify-and-Forward Cooperative Networks. IEEE Wireless<br>Communications Letters, 2017, 6, 674-677.                                    | 5.0 | 27        |
| 62 | Iterative Frequency-Domain Joint Channel Estimation and Data Detection of Faster-Than-Nyquist Signaling. IEEE Transactions on Wireless Communications, 2017, 16, 6221-6231. | 9.2 | 50        |
| 63 | Algebraic Differential Spatial Modulation is Capable of Approaching the Performance of its Coherent Counterpart. IEEE Transactions on Communications, 2017, , 1-1.          | 7.8 | 23        |
| 64 | Single-Carrier Frequency-Domain Equalization With Index Modulation. IEEE Communications Letters, 2017, 21, 298-301.                                                         | 4.1 | 52        |
| 65 | State-of-the-Art Design of Index Modulation in the Space, Time, and Frequency Domains: Benefits and Fundamental Limitations. IEEE Access, 2017, 5, 21774-21790.             | 4.2 | 79        |
| 66 | Generalized Buffer-State-Based Relay Selection for Fixed-Rate Buffer-Aided Cooperative Systems. , 2017, ,                                                                   |     | 5         |
| 67 | Dual-Mode Time-Domain Index Modulation for Nyquist-Criterion and Faster-Than-Nyquist<br>Single-Carrier Transmissions. IEEE Access, 2017, 5, 27659-27667.                    | 4.2 | 21        |
| 68 | Dual-Mode Time-Domain Single-Carrier Index Modulation with Frequency-Domain Equalization. , 2017, ,                                                                         |     | 8         |
| 69 | Generalized Virtual Full-Duplex Relaying Protocol Based on Buffer-Aided Half-Duplex Relay Nodes. ,<br>2017, , .                                                             |     | 9         |
| 70 | On the Simultaneous Exploitation of Multiple Source-to-Relay Channels in Buffer-Aided Two-Hop<br>Cooperative Networks. , 2016, , .                                          |     | 3         |
| 71 | Generalized Spatial Modulation Based Reduced-RF-Chain Millimeter-Wave Communications. IEEE<br>Transactions on Vehicular Technology, 2016, , 1-1.                            | 6.3 | 64        |
| 72 | Reduced-Packet-Delay Generalized Buffer-Aided Relaying Protocol: Simultaneous Activation of<br>Multiple Source-to-Relay Links. IEEE Access, 2016, 4, 3632-3646.             | 4.2 | 29        |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Extremely small wavevector regime in a one-dimensional photonic crystal heterostructure for angular transmission filtering. Optics Letters, 2016, 41, 3829.                                                   | 3.3  | 69        |
| 74 | Frequency-domain equalization aided iterative detection of faster-than-Nyquist signaling with noise whitening. , 2016, , .                                                                                    |      | 16        |
| 75 | Element-by-Element Full-Rank Optical Wireless MIMO Systems Using Narrow-Window Angular Filter<br>Designed Based on One-Dimensional Photonic Crystal. Journal of Lightwave Technology, 2016, 34,<br>5601-5609. | 4.6  | 9         |
| 76 | Subcarrier-Index Modulation Aided OFDM - Will It Work?. IEEE Access, 2016, 4, 2580-2593.                                                                                                                      | 4.2  | 167       |
| 77 | Single-Carrier SM-MIMO: A Promising Design for Broadband Large-Scale Antenna Systems. IEEE<br>Communications Surveys and Tutorials, 2016, 18, 1687-1716.                                                      | 39.4 | 200       |
| 78 | Theoretical Analysis of Hybrid Buffer-Aided Cooperative Protocol Based on Max–Max and Max–Link<br>Relay Selections. IEEE Transactions on Vehicular Technology, 2016, 65, 9236-9246.                           | 6.3  | 48        |
| 79 | Exit-Chart-Based Design of Irregular Precoded Power-Imbalanced Optical Spatial Modulation. , 2015, , .                                                                                                        |      | 3         |
| 80 | Speed-dependent autonomous beamwidth variation for VANET safety applications. , 2015, , .                                                                                                                     |      | 1         |
| 81 | Maximizing Constrained Capacity of Power-Imbalanced Optical Wireless MIMO Communications Using Spatial Modulation. Journal of Lightwave Technology, 2015, 33, 519-527.                                        | 4.6  | 116       |
| 82 | Single-RF Spatial Modulation Requires Single-Carrier Transmission: Frequency-Domain Turbo<br>Equalization for Dispersive Channels. IEEE Transactions on Vehicular Technology, 2015, 64, 4870-4875.            | 6.3  | 51        |
| 83 | Unified MIMO-Multicarrier Designs: A Space–Time Shift Keying Approach. IEEE Communications Surveys<br>and Tutorials, 2015, 17, 550-579.                                                                       | 39.4 | 34        |
| 84 | Frequency-Domain-Equalization-Aided Iterative Detection of Faster-than-Nyquist Signaling. IEEE<br>Transactions on Vehicular Technology, 2015, 64, 2122-2128.                                                  | 6.3  | 82        |
| 85 | Deep-Subwavelength MIMO Using Graphene-Based Nanoscale Communication Channel. IEEE Access, 2014, 2, 1240-1247.                                                                                                | 4.2  | 3         |
| 86 | Effects of Antenna Switching on Band-Limited Spatial Modulation. IEEE Wireless Communications Letters, 2014, 3, 345-348.                                                                                      | 5.0  | 55        |
| 87 | Single- and Multiple-RF Aided Non-Coherent Generalized Spatial Modulation. , 2014, , .                                                                                                                        |      | 5         |
| 88 | Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation.<br>Proceedings of the IEEE, 2014, 102, 56-103.                                                                        | 21.3 | 1,206     |
| 89 | Distance Adaptation Method for Magnetic Resonance Coupling Between Variable Capacitor-Loaded<br>Parallel-Wire Coils. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 892-900.                 | 4.6  | 13        |
| 90 | Coherent Versus Non-Coherent Reconfigurable Antenna Aided Virtual MIMO Systems. IEEE Signal<br>Processing Letters, 2014, 21, 390-394.                                                                         | 3.6  | 20        |

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Unified Differential Spatial Modulation. IEEE Wireless Communications Letters, 2014, 3, 337-340.                                                                                                      | 5.0  | 59        |
| 92  | Frequency-Domain Equalization of Faster-than-Nyquist Signaling. IEEE Wireless Communications<br>Letters, 2013, 2, 555-558.                                                                            | 5.0  | 117       |
| 93  | Cylindrical high impedance surface aided horizontally polarised omnidirectional antenna.<br>Electronics Letters, 2013, 49, 242-243.                                                                   | 1.0  | 0         |
| 94  | Bloom-Filter Aided Two-Layered Structured Overlay for Highly-Dynamic Wireless Distributed Storage.<br>IEEE Communications Letters, 2013, 17, 629-632.                                                 | 4.1  | 6         |
| 95  | On the Joint Optimization of Dispersion Matrices and Constellations for Near-Capacity Irregular<br>Precoded Space-Time Shift Keying. IEEE Transactions on Wireless Communications, 2013, 12, 380-387. | 9.2  | 35        |
| 96  | Reduced-Complexity Approx-Log-MAP and Max-Log-MAP Soft PSK/QAM Detection Algorithms. IEEE Transactions on Communications, 2013, 61, 1415-1425.                                                        | 7.8  | 17        |
| 97  | Spatial Modulation and Space-Time Shift Keying: Optimal Performance at a Reduced Detection Complexity. IEEE Transactions on Communications, 2013, 61, 206-216.                                        | 7.8  | 62        |
| 98  | OFDMA/SC-FDMA Aided Space–Time Shift Keying for Dispersive Multiuser Scenarios. IEEE Transactions on Vehicular Technology, 2013, 62, 408-414.                                                         | 6.3  | 42        |
| 99  | MC-CDMA aided multi-user space-time shift keying in wideband channels. , 2013, , .                                                                                                                    |      | 3         |
| 100 | Reduced-Complexity Soft-Decision Aided PSK Detection. , 2012, , .                                                                                                                                     |      | 0         |
| 101 | Iterative soft-detection of Space-Time-Frequency Shift Keying. , 2012, , .                                                                                                                            |      | 3         |
| 102 | Reduced-complexity Soft STBC detection. , 2012, , .                                                                                                                                                   |      | 0         |
| 103 | MIMO-Aided Near-Capacity Turbo Transceivers: Taxonomy and Performance versus Complexity. IEEE Communications Surveys and Tutorials, 2012, 14, 421-442.                                                | 39.4 | 58        |
| 104 | Stochastic-Resonance Based Iterative Detection for Serially-Concatenated Turbo Codes. IEEE Signal<br>Processing Letters, 2012, 19, 655-658.                                                           | 3.6  | 14        |
| 105 | Reduced-Complexity Iterative-Detection-Aided Generalized Space-Time Shift Keying. IEEE Transactions on Vehicular Technology, 2012, 61, 3656-3664.                                                     | 6.3  | 31        |
| 106 | Effects of Channel Estimation on Spatial Modulation. IEEE Signal Processing Letters, 2012, 19, 805-808.                                                                                               | 3.6  | 77        |
| 107 | Quasi-Synchronous Cooperative Networks: A Practical Cooperative Transmission Protocol. IEEE<br>Vehicular Technology Magazine, 2012, 7, 66-76.                                                         | 3.4  | 12        |
| 108 | A Universal Space-Time Architecture for Multiple-Antenna Aided Systems. IEEE Communications Surveys and Tutorials, 2012, 14, 401-420.                                                                 | 39.4 | 104       |

| #   | Article                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Decentralized-Precoding Aided Rateless Codes for Wireless Sensor Networks. IEEE Communications<br>Letters, 2012, 16, 506-509.                                                                 | 4.1 | 11        |
| 110 | Reduced-Complexity Soft-Decision Aided Space-Time Shift Keying. IEEE Signal Processing Letters, 2011, 18, 547-550.                                                                            | 3.6 | 18        |
| 111 | Reduced-Complexity Noncoherently Detected Differential Space-Time Shift Keying. IEEE Signal<br>Processing Letters, 2011, 18, 153-156.                                                         | 3.6 | 35        |
| 112 | Generalized Space-Time Shift Keying Designed for Flexible Diversity-, Multiplexing- and<br>Complexity-Tradeoffs. IEEE Transactions on Wireless Communications, 2011, 10, 1144-1153.           | 9.2 | 139       |
| 113 | Space-Time-Frequency Shift Keying for Dispersive Channels. IEEE Signal Processing Letters, 2011, 18, 177-180.                                                                                 | 3.6 | 40        |
| 114 | Dispersion Matrix Optimization for Space-Time Shift Keying. IEEE Communications Letters, 2011, 15, 1152-1155.                                                                                 | 4.1 | 20        |
| 115 | Coherent Versus Non-Coherent Decode-and-Forward Relaying Aided Cooperative Space-Time Shift<br>Keying. IEEE Transactions on Communications, 2011, 59, 1707-1719.                              | 7.8 | 75        |
| 116 | Reduced-Complexity Coherent Versus Non-Coherent QAM-Aided Space-Time Shift Keying. IEEE<br>Transactions on Communications, 2011, 59, 3090-3101.                                               | 7.8 | 97        |
| 117 | Coherent Versus Noncoherent. IEEE Vehicular Technology Magazine, 2011, 6, 38-48.                                                                                                              | 3.4 | 5         |
| 118 | Multiple-Symbol Differential Sphere Decoding Aided Cooperative Differential Space-Time Spreading for the Asynchronous CDMA Uplink. , 2011, , .                                                |     | 1         |
| 119 | Reduced-complexity noncoherently detected Differential Space-Time Shift Keying. , 2011, , .                                                                                                   |     | 20        |
| 120 | Reduced-Complexity QAM-Aided Space-Time Shift Keying. , 2011, , .                                                                                                                             |     | 6         |
| 121 | Semi-Blind Adaptive Space-Time Shift Keying Systems Based on Iterative Channel Estimation and Data Detection. , 2011, , .                                                                     |     | 2         |
| 122 | Coherent and Differential Space-Time Shift Keying: A Dispersion Matrix Approach. IEEE Transactions on Communications, 2010, 58, 3219-3230.                                                    | 7.8 | 233       |
| 123 | Varactor-loaded compact folded dipole antenna for digital terrestrial radio reception. Microwave and Optical Technology Letters, 2010, 52, 1463-1466.                                         | 1.4 | 1         |
| 124 | A Unified MIMO Architecture Subsuming Space Shift Keying, OSTBC, BLAST and LDC. , 2010, , .                                                                                                   |     | 16        |
| 125 | Semi-Blind Joint Channel Estimation and Data Detection for Space-Time Shift Keying Systems. IEEE Signal<br>Processing Letters, 2010, 17, 993-996.                                             | 3.6 | 36        |
| 126 | Cooperative Differential Space–Time Spreading for the Asynchronous Relay Aided CDMA Uplink Using<br>Interference Rejection Spreading Code. IEEE Signal Processing Letters, 2010, 17, 117-120. | 3.6 | 13        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Reduced-Complexity Iterative Markov Chain MBER Detection for MIMO Systems. IEEE Signal Processing Letters, 2009, 16, 160-163.                                                          | 3.6 | 6         |
| 128 | Improved Markov Chain MBER Detection for Steered Linear Dispersion Coded MIMO Systems. , 2009, , .                                                                                     |     | 8         |
| 129 | A Review of Recent Patents on Reactance-Loaded Reconfigurable Antennas. Recent Patents on Electrical Engineering, 2009, 2, 200-206.                                                    | 0.4 | 4         |
| 130 | Effect of Number of Elements of a Reactively Loaded Ring Antenna Array on the Performance of<br>Beamwidth Variation. IEEE Antennas and Wireless Propagation Letters, 2008, 7, 669-672. | 4.0 | 9         |
| 131 | Eigenspace-based blind pattern optimisations of steerable antenna array for interference cancellation.<br>IET Microwaves, Antennas and Propagation, 2008, 2, 358-366.                  | 1.4 | 1         |
| 132 | Varactor-Loaded H-Shaped Antenna With Radiation Pattern Control. IEEE Transactions on Antennas and Propagation, 2008, 56, 2833-2840.                                                   | 5.1 | 5         |
| 133 | Numerical study of steerable automotive antennas using artificial magnetic conductors. , 2007, , .                                                                                     |     | 0         |
| 134 | Reactively Steered Ring Antenna Array for Automotive Application. IEEE Transactions on Antennas and Propagation, 2007, 55, 1902-1908.                                                  | 5.1 | 30        |
| 135 | Characterization of Inductively-Coupled RF Plasma Sources with Multiple Low-Inductance Antenna<br>Units. Japanese Journal of Applied Physics, 2006, 45, 8046-8049.                     | 1.5 | 58        |