
Hyun Woo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1310227/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of indirubin-3′-aminooxy-acetamide derivatives as potent and selective FLT3/D835Y mutant kinase inhibitors for acute myeloid leukemia. European Journal of Medicinal Chemistry, 2022, 237, 114356.	5.5	1
2	Hot Spot Analysis of YAP-TEAD Protein-Protein Interaction Using the Fragment Molecular Orbital Method and Its Application for Inhibitor Discovery. Cancers, 2021, 13, 4246.	3.7	18
3	Regulation of CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 79-103.	4.5	27
4	Hypersensitivity to DNA doubleâ€strand breaks associated with PARG deficiency is suppressed by exoâ€1 and polqâ€1 mutations in CaenorhabditisÂelegans. FEBS Journal, 2020, 287, 1101-1115.	4.7	10
5	Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets. Cells, 2020, 9, 2308.	4.1	211
6	<i>O</i> -GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14259-14269.	7.1	36
7	Discovery of orally active indirubin-3′-oxime derivatives as potent type 1 FLT3 inhibitors for acute myeloid leukemia. European Journal of Medicinal Chemistry, 2020, 195, 112205.	5.5	21
8	Three-dimensional imaging of cell and extracellular matrix elasticity using quantitative micro-elastography. Biomedical Optics Express, 2020, 11, 867.	2.9	30
9	Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes. Molecules and Cells, 2020, 43, 763-773.	2.6	4
10	Dynamic Regulation of Bicarbonate Permeability through CFTR Channel by WNK1. Biophysical Journal, 2020, 118, 416a.	0.5	0
11	Volume Adaptation Controls Stem Cell Mechanotransduction. ACS Applied Materials & Interfaces, 2019, 11, 45520-45530.	8.0	57
12	Regulation of TEAD Transcription Factors in Cancer Biology. Cells, 2019, 8, 600.	4.1	159
13	MST1 Negatively Regulates TNFα-Induced NF-κB Signaling through Modulating LUBAC Activity. Molecular Cell, 2019, 73, 1138-1149.e6.	9.7	39
14	Regulation of the Hippo pathway in cancer biology. Cellular and Molecular Life Sciences, 2018, 75, 2303-2319.	5.4	57
15	Deregulation and Therapeutic Potential of the Hippo Pathway in Cancer. Annual Review of Cancer Biology, 2018, 2, 59-79.	4.5	14
16	RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 2018, 560, 655-660.	27.8	266
17	The Role of Hippo Pathway in Cancer Stem Cell Biology. Molecules and Cells, 2018, 41, 83-92.	2.6	140
18	elF5A-PEAK1 Signaling Regulates YAP1/TAZ Protein Expression and Pancreatic Cancer Cell Growth. Cancer Research, 2017, 77, 1997-2007.	0.9	57

HYUN WOO PARK

#	Article	IF	CITATIONS
19	Regulation of the Hippo Pathway Transcription Factor TEAD. Trends in Biochemical Sciences, 2017, 42, 862-872.	7.5	218
20	Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nature Cell Biology, 2017, 19, 996-1002.	10.3	153
21	Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198.	12.6	585
22	A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes and Development, 2015, 29, 1271-1284.	5.9	278
23	Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 2015, 17, 500-510.	10.3	421
24	Alternative Wnt Signaling Activates YAP/TAZ. Cell, 2015, 162, 780-794.	28.9	528
25	MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.	12.8	388
26	Enantioselective induction of SIRT1 gene by syringaresinol from Panax ginseng berry and Acanthopanax senticosus Harms stem. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 307-309.	2.2	15
27	Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis. PLoS Genetics, 2014, 10, e1004376.	3.5	146
28	The Hippo signaling pathway in stem cell biology and cancer. EMBO Reports, 2014, 15, 642-656.	4.5	532
29	Rag GTPases are cardioprotective by regulating lysosomal function. Nature Communications, 2014, 5, 4241.	12.8	73
30	Regulation of the Hippo pathway and implications for anticancer drug development. Trends in Pharmacological Sciences, 2013, 34, 581-589.	8.7	100
31	WNK4 inhibits plasma membrane targeting of NCC through regulation of syntaxin13 SNARE formation. Cellular Signalling, 2013, 25, 2469-2477.	3.6	7
32	Dynamic modulation of ANO1/TMEM16A HCO ₃ ^{â^^} permeability by Ca ²⁺ /calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 360-365.	7.1	152
33	ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature Cell Biology, 2013, 15, 741-750.	10.3	1,255
34	Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes and Development, 2013, 27, 1223-1232.	5.9	269
35	Transepithelial Bicarbonate Secretion: Lessons from the Pancreas. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009571-a009571.	6.2	30
36	Expression of Anion Exchangers in Cultured Human Endolymphatic Sac Epithelia. Otology and Neurotology, 2012, 33, 1664-1671.	1.3	7

HYUN WOO PARK

#	Article	IF	CITATIONS
37	Molecular Mechanism of Pancreatic and Salivary Gland Fluid and HCO ₃ ^{â^'} Secretion. Physiological Reviews, 2012, 92, 39-74.	28.8	323
38	Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells. Cellular Signalling, 2012, 24, 899-906.	3.6	43
39	WNK4 kinase negatively regulates the surface expression of Muscarinic M3 receptor. Cellular Signalling, 2011, 23, 566-571.	3.6	1
40	Serine-threonine kinase with-no-lysine 4 (WNK4) controls blood pressure via transient receptor potential canonical 3 (TRPC3) in the vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10750-10755.	7.1	34
41	βPix Up-regulates Na+/H+ Exchanger 3 through a Shank2-mediated Protein-Protein Interaction. Journal of Biological Chemistry, 2010, 285, 8104-8113.	3.4	20
42	Dynamic Regulation of CFTR Bicarbonate Permeability by [Clâ^']i and Its Role in Pancreatic Bicarbonate Secretion. Gastroenterology, 2010, 139, 620-631.	1.3	172
43	PDZ-based adaptor proteins in epithelial anion transport and VIP receptor regulation. Journal of Medical Investigation, 2009, 56, 302-305.	0.5	2
44	Synaptic Scaffolding Molecule Binds to and Regulates Vasoactive Intestinal Polypeptide Type-1 Receptor in Epithelial Cells. Gastroenterology, 2009, 137, 607-617.e4.	1.3	30