Felix M Ho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307862/publications.pdf

Version: 2024-02-01

516710 454955 42 945 16 30 h-index citations g-index papers 43 43 43 880 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Systems Thinking and Sustainability. Chemistry International, 2021, 43, 6-10.	0.3	9
2	The Dps4 from Nostoc punctiforme ATCC 29133 is a member of His-type FOC containing Dps protein class that can be broadly found among cyanobacteria. PLoS ONE, 2019, 14, e0218300.	2.5	7
3	Class Id ribonucleotide reductase utilizes a Mn2(IV,III) cofactor and undergoes large conformational changes on metal loading. Journal of Biological Inorganic Chemistry, 2019, 24, 863-877.	2.6	10
4	Turning Challenges into Opportunities for Promoting Systems Thinking through Chemistry Education. Journal of Chemical Education, 2019, 96, 2764-2776.	2.3	20
5	Future Directions for Systems Thinking in Chemistry Education: Putting the Pieces Together. Journal of Chemical Education, 2019, 96, 3000-3005.	2.3	26
6	Graphs: Working with Models at the Crossroad between Chemistry and Mathematics. ACS Symposium Series, 2019, , 47-67.	0.5	2
7	Can Chemistry Be a Central Science without Systems Thinking?. Journal of Chemical Education, 2019, 96, 2679-2681.	2.3	34
8	Covariational reasoning and mathematical narratives: investigating students' understanding of graphs in chemical kinetics. Chemistry Education Research and Practice, 2019, 20, 107-119.	2 . 5	34
9	Title is missing!. , 2019, 14, e0218300.		0
10	Title is missing!. , 2019, 14, e0218300.		0
11	Title is missing!. , 2019, 14, e0218300.		O
12	Title is missing!. , 2019, 14, e0218300.		0
13	Protein engineering of α-ketoisovalerate decarboxylase for improved isobutanol production in Synechocystis PCC 6803. Metabolic Engineering, 2018, 47, 42-48.	7.0	42
14	Reforms in pedagogy and the Confucian tradition: looking below the surface. Cultural Studies of Science Education, 2018, 13, 133-145.	1.3	7
15	<i>Journal of Chemical Education</i> Call for Papersâ€"Special Issue on Reimagining Chemistry Education: Systems Thinking, and Green and Sustainable Chemistry. Journal of Chemical Education, 2018, 95, 1689-1691.	2.3	42
16	Differential biochemical properties of three canonical Dps proteins from the cyanobacterium Nostoc punctiforme suggest distinct cellular functions. Journal of Biological Chemistry, 2018, 293, 16635-16646.	3.4	13
17	The protonation state around Tyr D /Tyr D • in photosystem II is reflected in its biphasic oxidation kinetics. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 147-155.	1.0	5
18	Tyrozine D oxidation and redox equilibrium in photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 407-417.	1.0	10

#	Article	IF	CITATIONS
19	International Comparisons of Tertiary Chemistry Education: A Best-Practice Approach for Development and Quality Enhancement. Chemistry International, 2016, 38, .	0.3	O
20	Turning around the electron flow in an uptake hydrogenase. EPR spectroscopy and in vivo activity of a designed mutant in HupSL from Nostoc punctiforme. Energy and Environmental Science, 2016, 9, 581-594.	30.8	24
21	Comparison and Evaluation of Learning Outcomes from an International Perspective: Development of a Best-Practice Process. Journal of Chemical Education, 2015, 92, 427-432.	2.3	12
22	Water in Photosystem II: Structural, functional and mechanistic considerations. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 14-32.	1.0	75
23	Split Electron Paramagnetic Resonance Signal Induction in Photosystem II Suggests Two Binding Sites in the S ₂ State for the Substrate Analogue Methanol. Biochemistry, 2013, 52, 3669-3677.	2.5	8
24	Molecular Dynamics Simulations of a Putative H+ Pathway in Photosystem II. Advanced Topics in Science and Technology in China, 2013, , 222-226.	0.1	1
25	Visible Light Induction of an Electron Paramagnetic Resonance Split Signal in Photosystem II in the S2 State Reveals the Importance of Charges in the Oxygen-Evolving Center during Catalysis: A Unifying Model. Biochemistry, 2012, 51, 2054-2064.	2.5	15
26	Structural and mechanistic investigations of photosystem II through computational methods. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 106-120.	1.0	32
27	The formation of the split EPR signal from the S3 state of Photosystem II does not involve primary charge separation. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 11-21.	1.0	14
28	Modeling Photosystem I with the alternative reaction center protein PsaB2 in the nitrogen fixing cyanobacterium Nostoc punctiforme. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1152-1161.	1.0	18
29	Substrate and Product Channels in Photosystem II. RSC Energy and Environment Series, 2011, , 208-248.	0.5	4
30	Metalloradical EPR Signals from the YZ·S-State Intermediates in Photosystem II. Applied Magnetic Resonance, 2010, 37, 151-176.	1.2	35
31	Transcription of a "silent―cyanobacterial psbA gene is induced by microaerobic conditions. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 105-112.	1.0	55
32	The S1 split signal of photosystem II; a tyrosine–manganese coupled interaction. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 882-889.	1.0	12
33	Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Photosynthesis Research, 2008, 98, 503-522.	2.9	61
34	Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 140-153.	1.0	151
35	Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 496-503.	1.0	17
36	The Mechanism Behind the Formation of the "Split S3―EPR Signal in Photosystem II Induced by Visible rr Near-Infrared Light. , 2008, , 423-426.		0

#	Article	IF	CITATIONS
37	Access Channels and Methanol Binding Site to the CaMn4 Cluster in Photosystem II Based on Solvent Accessibility Simulations, with Implications for Substrate Water Access., 2008, , 431-435.		O
38	Formation Spectra of the EPR Split Signals from the S ₀ , S ₁ , and S ₃ States in Photosystem II Induced by Monochromatic Light at 5 K. Biochemistry, 2007, 46, 10703-10712.	2.5	28
39	Enhancement of YD• spin relaxation by the CaMn4 cluster in photosystem II detected at room temperature: A new probe for the S-cycle. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 5-14.	1.0	5
40	Split EPR Signals from Photosystem II Are Modified by Methanol, Reflecting S State-Dependent Binding and Alterations in the Magnetic Coupling in the CaMn4 Cluster. Biochemistry, 2006, 45, 7617-7627.	2.5	30
41	A strand exchange FRET assay for DNA. Biosensors and Bioelectronics, 2004, 20, 1001-1010.	10.1	13
42	Parameters Important in Fabricating Enzyme Electrodes Using Self-Assembled Monolayers of Alkanethiols Analytical Sciences, 2001, 17, 3-9.	1.6	73