Frederic Francis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307730/publications.pdf

Version: 2024-02-01

185 papers 6,811 citations

57758 44 h-index 71 g-index

196 all docs

196
docs citations

196 times ranked 6641 citing authors

#	Article	IF	CITATIONS
1	Consumer acceptance of insect-based alternative meat products in Western countries. Food Quality and Preference, 2016, 52, 237-243.	4.6	348
2	Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in Plant Science, 2017, 8, 298.	3.6	348
3	Edible Insects Acceptance by <scp>B</scp> elgian Consumers: Promising Attitude for Entomophagy Development. Journal of Sensory Studies, 2014, 29, 14-20.	1.6	283
4	Review An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genetics and Molecular Research, 2011, 10, 3056-3069.	0.2	208
5	Identification of aphid salivary proteins: a proteomic investigation of <i>Myzus persicae</i> Insect Molecular Biology, 2008, 17, 165-174.	2.0	204
6	Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nature Communications, 2011, 2, 348.	12.8	152
7	Olfactory Responses to Aphid and Host Plant Volatile Releases: (E)-Â-Farnesene an Effective Kairomone for the Predator Adalia bipunctata. Journal of Chemical Ecology, 2004, 30, 741-755.	1.8	147
8	Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. Journal of Asia-Pacific Entomology, 2017, 20, 337-340.	0.9	135
9	Is the (E)â€ <i>β</i> â€farnesene only volatile terpenoid in aphids?. Journal of Applied Entomology, 2005, 129, 6-11.	1.8	134
10	Effects of allelochemicals from first (brassicaceae) and second (Myzus persicae and Brevicoryne) Tj ETQq0 0 0 rg	BT /Qverlo	ck 10 Tf 50 3
11	Aphid alarm pheromone: An overview of current knowledge on biosynthesis and functions. Insect Biochemistry and Molecular Biology, 2012, 42, 155-163.	2.7	112
12	Comparative analyses of salivary proteins from three aphid species. Insect Molecular Biology, 2014, 23, 67-77.	2.0	111
13	Electrophysiological and Behavioral Responses of the Multicolored Asian Lady Beetle, Harmonia axyridis Pallas, to Sesquiterpene Semiochemicals. Journal of Chemical Ecology, 2007, 33, 2148-2155.	1.8	110
14	Salivary Glucose Oxidase from Caterpillars Mediates the Induction of Rapid and Delayed-Induced Defenses in the Tomato Plant. PLoS ONE, 2012, 7, e36168.	2.5	107
15	Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa) Tj ETQq1 1 0.78 compound release and oxylipin synthesis. Journal of Experimental Botany, 2009, 60, 1231-1240.	4314 rgB1 4.8	Overlock 10
16	Wheat (<i>Triticum aestivum</i> L.)-based intercropping systems for biological pest control. Pest Management Science, 2016, 72, 2193-2202.	3.4	88
17	The interplay of climate and land use change affects the distribution of <scp>EU</scp> bumblebees. Global Change Biology, 2018, 24, 101-116.	9.5	84
18	Nine facultative endosymbionts in aphids. A review. Journal of Asia-Pacific Entomology, 2017, 20, 794-801.	0.9	82

#	Article	IF	Citations
19	Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, 2018, 106, 503-508.	6.2	78
20	About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae. Scientific Reports, 2020, 10, 11916.	3.3	73
21	Spatial diversification of agroecosystems to enhance biological control and other regulating services: An agroecological perspective. Science of the Total Environment, 2018, 621, 600-611.	8.0	68
22	Proteomics in Myzus persicae: Effect of aphid host plant switch. Insect Biochemistry and Molecular Biology, 2006, 36, 219-227.	2.7	67
23	Role of (E)- \hat{l}^2 -farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera:) Tj ETQq $1\ 1\ 0$.784314 rg 1.2	gBT/Overlock
24	Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLoS ONE, 2017, 12, e0171529.	2.5	65
25	Role of terpenes from aphid-infested potato on searching and oviposition behavior of Episyrphus balteatus. Insect Science, 2007, 14, 57.	3.0	62
26	Proteomic Investigation of Aphid Honeydew Reveals an Unexpected Diversity of Proteins. PLoS ONE, 2013, 8, e74656.	2.5	62
27	Pest regulation and support of natural enemies in agriculture: Experimental evidence of within field wildflower strips. Ecological Engineering, 2017, 98, 240-245.	3.6	62
28	Performances of local poultry breed fed black soldier fly larvae reared on horse manure. Animal Nutrition, 2018, 4, 73-78.	5.1	62
29	Hoverfly Glutathione S-Transferases and Effect of Brassicaceae Secondary Metabolites. Pesticide Biochemistry and Physiology, 2001, 71, 170-177.	3.6	60
30	Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites. Frontiers in Microbiology, 2018, 9, 177.	3.5	60
31	The semiochemically mediated interactions between bacteria and insects. Chemoecology, 2011, 21, 113-122.	1.1	59
32	Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Applied Soil Ecology, 2016, 104, 67-78.	4.3	57
33	Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae. Insect Biochemistry and Molecular Biology, 2015, 64, 16-24.	2.7	55
34	Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: Implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins: Structure, Function and Bioinformatics, 2006, 65, 742-758.	2.6	54
35	Tuta absoluta-induced plant volatiles: attractiveness towards the generalist predator Macrolophus pygmaeus. Arthropod-Plant Interactions, 2015, 9, 465-476.	1.1	53
36	The Odor of Death: An Overview of Current Knowledge on Characterization and Applications. BioScience, 2017, 67, 600-613.	4.9	53

#	Article	IF	Citations
37	Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition?. Arthropod-Plant Interactions, 2011, 5, 193-199.	1.1	51
38	Effect of Aphid Host Plant on Development and Reproduction of the Third Trophic Level, the Predator <i>Adalia bipunctata</i> (Coleoptera: Coccinellidae). Environmental Entomology, 2001, 30, 947-952.	1.4	50
39	Proteome analysis of the bovine milk fat globule: Enhancement of membrane purification. International Dairy Journal, 2008, 18, 885-893.	3.0	49
40	Will climate change affect insect pheromonal communication?. Current Opinion in Insect Science, 2016, 17, 87-91.	4.4	49
41	Optimization of black soldier fly (Hermetia illucens) artificial reproduction. PLoS ONE, 2019, 14, e0216160.	2.5	49
42	Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomologia Experimentalis Et Applicata, 2007, 125, 13-21.	1.4	48
43	Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Letters, 2008, 582, 1928-1934.	2.8	47
44	Conserved Odorant-Binding Proteins from Aphids and Eavesdropping Predators. PLoS ONE, 2011, 6, e23608.	2.5	47
45	Study on the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins. International Dairy Journal, 2011, 21, 312-318.	3.0	45
46	Climate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?. Environmental Entomology, 2015, 44, 277-286.	1.4	43
47	Optimisation of a cheap and residential smallâ€scale production of edible crickets with local byâ€products as an alternative proteinâ€rich human food source in Ratanakiri Province, Cambodia. Journal of the Science of Food and Agriculture, 2016, 96, 627-632.	3.5	42
48	Molecular detection of six (endo-) symbiotic bacteria in Belgian mosquitoes: first step towards the selection of appropriate paratransgenesis candidates. Parasitology Research, 2016, 115, 1391-1399.	1.6	42
49	Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chemistry, 2019, 276, 714-718.	8.2	42
50	Influence of host plants on specialist / generalist aphids and on the development of Adalia bipunctata (Coleoptera: Coccinellidae). European Journal of Entomology, 2000, 97, 481-485.	1.2	42
51	Semiochemicals of Rhagoletis fruit flies: Potential for integrated pest management. Crop Protection, 2015, 78, 114-118.	2.1	41
52	Protein value of two insects, subjected to various heat treatments, using growing rats and the protein digestibility-corrected amino acid score. Journal of Insects As Food and Feed, 2018, 4, 77-87.	3.9	39
53	Ability of <i>Tuta absoluta</i> (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Canadian Entomologist, 2016, 148, 434-442.	0.8	38
54	Silencing an essential gene involved in infestation and digestion in grain aphid through plantâ€mediated <scp>RNA</scp> interference generates aphidâ€resistant wheat plants. Plant Biotechnology Journal, 2019, 17, 852-854.	8.3	38

#	Article	IF	Citations
55	Tritrophic interactions among Macrosiphum euphorbiae aphids, their host plants and endosymbionts: Investigation by a proteomic approach. Journal of Insect Physiology, 2010, 56, 575-585.	2.0	36
56	Development of ecotoxicoproteomics on the freshwater amphipod Gammarus pulex: Identification of PCB biomarkers in glycolysis and glutamate pathways. Ecotoxicology and Environmental Safety, 2010, 73, 343-352.	6.0	34
57	Usutu virus, Belgium, 2016. Infection, Genetics and Evolution, 2017, 48, 116-119.	2.3	34
58	Drawbacks and benefits of hygienic behavior in honey bees (<i>Apis mellifera</i> L.): a review. Journal of Apicultural Research, 2017, 56, 366-375.	1.5	34
59	Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expression and Purification, 2012, 83, 117-127.	1.3	33
60	Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod-Plant Interactions, 2018, 12, 787-797.	1.1	33
61	Physicochemical Characteristics of Date Sap " <i>Lagmi</i> from Deglet Nour Palm (<i>Phoenix) Tj ETQq1</i>	1 0,7843	14 rgBT /Over
62	The functional significance of $E-\hat{l}^2$ -Farnesene: Does it influence the populations of aphid natural enemies in the fields?. Biological Control, 2012, 60, 108-112.	3.0	32
63	Influence of Garlic Intercropping or Active Emitted Volatiles in Releasers on Aphid and Related Beneficial in Wheat Fields in China. Journal of Integrative Agriculture, 2013, 12, 467-473.	3.5	32
64	Proteins Identified from Saliva and Salivary Glands of the Chinese Gall Aphid <i>Schlechtendalia chinensis</i> . Proteomics, 2018, 18, e1700378.	2.2	32
65	Comparative transcriptome and histological analyses of wheat in response to phytotoxic aphid Schizaphis graminum and non-phytotoxic aphid Sitobion avenae feeding. BMC Plant Biology, 2019, 19, 547.	3.6	31
66	Identification of limonene as a potential kairomone of the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 2010, 107, 541-548.	1.2	31
67	Could alternative solanaceous hosts act as refuges for the tomato leafminer, Tuta absoluta?. Arthropod-Plant Interactions, 2015, 9, 425-435.	1.1	30
68	Comparative aspects of cricket farming in Thailand, Cambodia, Lao People's Democratic Republic, Democratic Republic of the Congo and Kenya. Journal of Insects As Food and Feed, 2018, 4, 101-114.	3.9	30
69	Influence of prey host plant on a generalist aphidophagous predator: Episyrphus balteatus (Diptera:) Tj ETQq1 🛚	l 0.784314 1.2	4 rgBT /Over
70	Characterization of a new \hat{l}^2 -glucosidase \hat{l}^2 -xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiology Letters, 2011, 314, 147-157.	1.8	29
71	Combining intercropping with semiochemical releases: optimization of alternative control of Sitobion avenae in wheat crops in China. Entomologia Experimentalis Et Applicata, 2011, 140, 189-195.	1.4	29
72	Testing semiochemicals from aphid, plant and conspecific: attraction of <i>Harmonia axyridis</i> Insect Science, 2012, 19, 372-382.	3.0	29

#	Article	IF	Citations
73	Volatile Profile and Physico-Chemical Analysis of Acacia Honey for Geographical Origin and Nutritional Value Determination. Foods, 2019, 8, 445.	4.3	29
74	Residues and enantioselective behavior of cyflumetofen from apple production. Food Chemistry, 2020, 321, 126687.	8.2	29
75	Structural features conferring dual Geranyl/Farnesyl diphosphate synthase activity to an aphid prenyltransferase. Insect Biochemistry and Molecular Biology, 2009, 39, 707-716.	2.7	28
76	Infestation Level Influences Oviposition Site Selection in the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Insects, 2014, 5, 877-884.	2.2	28
77	Flower Strips in Wheat Intercropping System: Effect on Pollinator Abundance and Diversity in Belgium. Insects, 2018, 9, 114.	2.2	28
78	Effect of stinging nettle habitats on aphidophagous predators and parasitoids in wheat and green pea fields with special attention to the invader <i>Harmonia axyridis</i> Pallas (Coleoptera:) Tj ETQq0 0 0 rgBT /Over	lo ck d0Tf	5 0:5 37 Td ((
79	Discrimination of parasitized aphids by a hoverfly predator: effects on larval performance, foraging, and oviposition behavior. Entomologia Experimentalis Et Applicata, 2008, 128, 73-80.	1.4	26
80	An introduction device for the aphidophagous hoverfly Episyrphus balteatus (De Geer) (Diptera:) Tj ETQq0 0 0 rg	BT/Overlo	ock 10 Tf 50 4
81	Quantitative food webs of herbivore and related beneficial community in non-crop and crop habitats. Biological Control, 2011, 58, 103-112.	3.0	26
82	Labeling Regulations and Quality Control of Honey Origin: A Review. Food Reviews International, 2020, 36, 215-240.	8.4	25
83	Emission of alarm pheromone by nonâ€preyed aphid colonies. Journal of Applied Entomology, 2008, 132, 601-604.	1.8	24
84	Oviposition deterrent activity of basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environmental Science and Pollution Research, 2018, 25, 29880-29888.	5.3	24
85	Volatiles of bacteria associated with parasitoid habitats elicit distinct olfactory responses in an aphid parasitoid and its hyperparasitoid. Functional Ecology, 2020, 34, 507-520.	3.6	24
86	Aphidophagous guilds on nettle (Urtica dioica) strips close to fields of green pea, rape and wheat. Insect Science, 2007, 14, 419-424.	3.0	23
87	Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphicidal properties. Fungal Biology, 2011, 115, 1093-1099.	2.5	23
88	Discovery of English Grain Aphid (Hemiptera: Aphididae) Biotypes in China. Journal of Economic Entomology, 2011, 104, 1080-1086.	1.8	23
89	Aromatic plants of East Asia to enhance natural enemies towards biological control of insect pests. A review. Entomologia Generalis, 2019, 38, 275-315.	3.1	23
90	Detection and geographic distribution of seven facultative endosymbionts in two <i>Rhopalosiphum</i> aphid species. MicrobiologyOpen, 2019, 8, e00817.	3.0	23

#	Article	IF	Citations
91	Identification of flower functional traits affecting abundance of generalist predators in perennial multiple species wildflower strips. Arthropod-Plant Interactions, 2019, 13, 127-137.	1.1	23
92	Total replacement of fish meal by enrichedâ€fatty acid <i>Hermetia illucens</i> meal did not substantially affect growth parameters or innate immune status and improved whole body biochemical quality of Nile tilapia juveniles. Aquaculture Nutrition, 2021, 27, 880-896.	2.7	22
93	Effect of entomopathogenic Aspergillus strains against the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae). Applied Entomology and Zoology, 2014, 49, 453-458.	1.2	21
94	A fungal biofilm reactor based on metal structured packing improves the quality of a Gla::GFP fusion protein produced by Aspergillus oryzae. Applied Microbiology and Biotechnology, 2015, 99, 6241-6254.	3.6	21
95	New slow release mixture of $(\langle i\rangle E\langle i\rangle)$ $\hat{a}\in \hat{i}^2$ $\hat{a}\in \hat{i}$ arnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. Pest Management Science, 2021, 77, 3341-3348.	3.4	21
96	Aphid honeydew: An arrestant and a contact kairomone for Episyrphus balteatus (Diptera: Syrphidae) larvae and adults. European Journal of Entomology, 2014, 111, 237-242.	1.2	20
97	Plant-Mediated Interactions between Two Cereal Aphid Species: Promotion of Aphid Performance and Attraction of More Parasitoids by Infestation of Wheat with Phytotoxic Aphid Schizaphis graminum. Journal of Agricultural and Food Chemistry, 2019, 67, 2763-2773.	5.2	20
98	Betraying its presence: identification of the chemical signal released by Tuta absoluta-infested tomato plants that guide generalist predators toward their prey. Arthropod-Plant Interactions, 2017, 11, 111-120.	1.1	19
99	Insight into Salivary Cland Proteomes of Two Polyphagous Stink Bugs: Nezara viridula L. and Halyomorpha halys Stål. Proteomics, 2019, 19, 1800436.	2.2	19
100	Induced Systemic Resistance by a Plant Growth-Promoting Rhizobacterium Impacts Development and Feeding Behavior of Aphids. Insects, 2020, 11, 234.	2.2	19
101	Intraguild interactions and aphid predators: biological efficiency of <i>Harmonia axyridis</i> and <i>Episyrphus balteatus</i> Journal of Applied Entomology, 2010, 134, 34-44.	1.8	18
102	Role of larval host plant experience and solanaceous plant volatile emissions in Tuta absoluta (Lepidoptera: Gelechiidae) host finding behavior. Arthropod-Plant Interactions, 2014, 8, 293.	1.1	18
103	Nutritional composition and rearing potential of the meadow grasshopper (Chorthippus parallelus) Tj ETQq $1\ 1$	0.784314 0.9	rgBT/Overlo
104	Screening of pesticide residues in Traditional Chinese Medicines using modified QuEChERS sample preparation procedure and LC-MS/MS analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1152, 122224.	2.3	18
105	Histopathological effects of Aspergillus clavatus (Ascomycota: Trichocomaceae) on larvae of the southern house mosquito, Culex quinquefasciatus (Diptera: Culicidae). Fungal Biology, 2016, 120, 489-499.	2.5	17
106	Elevated Carbon Dioxide Concentration Reduces Alarm Signaling in Aphids. Journal of Chemical Ecology, 2017, 43, 164-171.	1.8	17
107	Bioassays to Quantify Hygienic Behavior in Honey Bee (<i>Apis Mellifera</i> L.) Colonies: A Review. Journal of Apicultural Research, 2018, 57, 663-673.	1.5	17
108	Characterization of electropenetrography waveforms for the invasive heteropteran pest, Halyomorpha halys, on Vicia faba leaves. Arthropod-Plant Interactions, 2020, 14, 113-126.	1.1	17

#	Article	IF	CITATIONS
109	Control of <i>Dermanyssus gallinae</i> (De Geer 1778) and other mites with volatile organic compounds, a review. Parasitology, 2020, 147, 731-739.	1.5	17
110	Creating Perennial Flower Strips: Think Functional!. Agriculture and Agricultural Science Procedia, 2015, 6, 95-101.	0.6	16
111	Hygienic removal of freeze-killed brood does not predict <i>Varroa</i> resistance traits in unselected stocks. Journal of Apicultural Research, 2018, 57, 292-299.	1.5	16
112	Detection of Hermetia illucens by real-time PCR. Journal of Insects As Food and Feed, 2018, 4, 115-122.	3.9	16
113	From Diverse Origins to Specific Targets: Role of Microorganisms in Indirect Pest Biological Control. Insects, 2020, 11, 533.	2.2	16
114	Response and genetic analysis of malathion-specific resistant Tribolium castaneum (Herbst) in relation to population density. Journal of Stored Products Research, 2007, 43, 33-44.	2.6	15
115	Residue and Dietary Risk Assessment of Chiral Cyflumetofen in Apple. Molecules, 2018, 23, 1060.	3.8	15
116	Effect of processing on herbicide residues and metabolite formation during traditional Chinese tofu production. LWT - Food Science and Technology, 2020, 131, 109707.	5.2	15
117	Technical basis for the small-scale production of black soldier fly, Hermetia illucens (L. 1758), meal as fish feed in Benin. Journal of Agriculture and Food Research, 2021, 4, 100153.	2.5	15
118	Distribution of bumblebees across Europe. One Ecosystem, 0, 3, .	0.0	15
119	La lutte contre les moustiques (Diptera: Culicidae): diversité des approches et application du contrÃ1e biologique. Canadian Entomologist, 2015, 147, 476-500.	0.8	14
120	Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion. Journal of Virological Methods, 2016, 235, 34-40.	2.1	13
121	Cowpea aphid–plant interactions: endosymbionts and related salivary protein patterns. Entomologia Experimentalis Et Applicata, 2018, 166, 460-473.	1.4	13
122	Changes of feeding behavior and salivary proteome of Brown Marmorated Stink Bug when exposed to insect-induced plant defenses. Arthropod-Plant Interactions, 2020, 14, 101-112.	1,1	13
123	Biocidal activity of polylactic acid-based nano-formulated abamectin on Acyrthosiphon pisum (Hemiptera: Aphididae) and the aphid predator Adalia bipunctata (Coleoptera: Coccinellidae). PLoS ONE, 2020, 15, e0228817.	2.5	13
124	Production of rainbow trout (Oncorhynchus mykiss) using black soldier fly (Hermetia illucens) prepupae-based formulations with differentiated fatty acid profiles. Science of the Total Environment, 2021, 794, 148647.	8.0	13
125	Production of two entomopathogenic <i>Aspergillus</i> species and insecticidal activity against the mosquito <i>Culex quinquefasciatus</i> compared to <i>Metarhizium anisopliae</i> Biocontrol Science and Technology, 2016, 26, 617-629.	1.3	12
126	Protein elicitor PeaT1 enhanced resistance against aphid (Sitobion avenae) in wheat. Pest Management Science, 2020, 76, 236-243.	3.4	12

#	Article	IF	CITATIONS
127	Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Molecular Biology Reports, 2020, 47, 211-224.	2.3	12
128	Overview of Bruchus rufimanus Boheman 1833 (Coleoptera: Chrysomelidae): Biology, chemical ecology and semiochemical opportunities in integrated pest management programs. Crop Protection, 2021, 140, 105411.	2.1	12
129	Edible insects, what about the perceptions of Belgian youngsters?. British Food Journal, 2021, 123, 1985-2002.	2.9	12
130	Risques et valorisation des insectes dans l'alimentation humaine et animale. Annales De La Societe Entomologique De France, 2015, 51, 215-258.	0.9	11
131	Physicochemical characterization of colored soluble protein fractions extracted from <i>Spirulina </i> Spirulina platensis). Food Science and Technology International, 2018, 24, 651-663.	2.2	11
132	Dispersion of <i><scp>M</scp>yzus persicae</i> and transmission of <i>Potato virus Y</i> under elevated <scp>CO</scp> ₂ atmosphere. Entomologia Experimentalis Et Applicata, 2018, 166, 380-385.	1.4	11
133	Effects of Host Plants Reared under Elevated CO2 Concentrations on the Foraging Behavior of Different Stages of Corn Leaf Aphids Rhopalosiphum maidis. Insects, 2019, 10, 182.	2.2	11
134	Does the Infectious Status of Aphids Influence Their Preference Towards Healthy, Virus-Infected and Endophytically Colonized Plants?. Insects, 2020, 11, 435.	2.2	11
135	First report of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Onion (Allium cepa L.) in South Kivu, Eastern DR Congo. Revista Brasileira De Entomologia, 2021, 65, .	0.4	11
136	Perennial Flowering Strips for Conservation Biological Control of Insect Pests: From Picking and Mixing Flowers to Tailored Functional Diversity. Progress in Biological Control, 2020, , 57-71.	0.5	11
137	Effects of Wildflower Strips and an Adjacent Forest on Aphids and Their Natural Enemies in a Pea Field. Insects, 2017, 8, 99.	2.2	10
138	Combining $\langle i \rangle E \langle i \rangle - \hat{l}^2$ -farnesene and methyl salicylate release with wheat-pea intercropping enhances biological control of aphids in North China. Biocontrol Science and Technology, 2018, 28, 883-894.	1.3	10
139	Fall Armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in South Kivu, DR Congo: Understanding How Season and Environmental Conditions Influence Field Scale Infestations. Neotropical Entomology, 2021, 50, 145-155.	1.2	10
140	Can Insect Meal Replace Fishmeal? A Meta-Analysis of the Effects of Black Soldier Fly on Fish Growth Performances and Nutritional Values. Animals, 2022, 12, 1700.	2.3	10
141	Bioclimatic zonation and potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in South Kivu Province, DR Congo. BMC Ecology, 2020, 20, 66.	3.0	9
142	Insight into watery saliva proteomes of the grain aphid, <i>Sitobion avenae</i> . Archives of Insect Biochemistry and Physiology, 2021, 106, e21752.	1.5	9
143	Biocontrol potential and mode of action of entomopathogenic bacteria Xenorhabdus budapestensis C72 against Bipolaris maydis. Biological Control, 2021, 158, 104605.	3.0	9
144	Pathogenicity of <i>Aspergillus clavatus</i> produced in a fungal biofilm bioreactor toward <i>Culex quinquefasciatus</i> (Diptera: Culicidae). Journal of Pesticide Sciences, 2014, 39, 127-132.	1.4	8

#	Article	IF	CITATIONS
145	Elevated CO2 Concentrations Impact the Semiochemistry of Aphid Honeydew without Having a Cascade Effect on an Aphid Predator. Insects, 2018, 9, 47.	2.2	8
146	Differential wing polyphenism adaptation across life stages under extreme high temperatures in corn leaf aphid. Scientific Reports, 2019, 9, 8744.	3.3	8
147	Reduction of Plant Suitability for Corn Leaf Aphid (Hemiptera: Aphididae) Under Elevated Carbon Dioxide Condition. Environmental Entomology, 2019, 48, 935-944.	1.4	8
148	Cuticular hydrocarbon composition does not allow Harmonia axyridis males to identify the mating status of sexual partners. Entomologia Generalis, 2019, 38, 211-224.	3.1	8
149	Linking variety-dependent root volatile organic compounds in maize with differential infestation by wireworms. Journal of Pest Science, 2020, 93, 605-614.	3.7	8
150	Genome-wide identification and characterization of the TPS gene family in wheat (Triticum aestivum L.) and expression analysis in response to aphid damage. Acta Physiologiae Plantarum, 2021, 43, 1.	2.1	8
151	Proteomics based approach for edible insect fingerprinting in novel food: Differential efficiency according to selected model species. Food Control, 2020, 112, 107135.	5.5	8
152	Behavioral and Electrophysiological Responses of the Fringed Larder Beetle Dermestes frischii to the Smell of a Cadaver at Different Decomposition Stages. Insects, 2020, 11, 238.	2.2	7
153	ï‰3-enrichment of Hermetia illucens (L. 1758) prepupae from oilseed byproducts. Journal of the Saudi Society of Agricultural Sciences, 2021, 20, 155-163.	1.9	7
154	Aphid–Plant–Phytovirus Pathosystems: Influencing Factors from Vector Behaviour to Virus Spread. Agriculture (Switzerland), 2021, 11, 502.	3.1	7
155	Impact of necrophagous insects on the emission of volatile organic compounds released during the decaying process. Entomologia Generalis, 2019, 39, 19-31.	3.1	7
156	Aphid–hoverfly interactions under elevated CO ₂ concentrations: oviposition and larval development. Physiological Entomology, 2018, 43, 245-250.	1.5	6
157	Vermiculture in animal farming: A review on the biological and nonbiological risks related to earthworms in animal feed. Cogent Environmental Science, 2019, 5, 1591328.	1.6	6
158	Forensic taphonomy: Characterization of the gravesoil chemistry using a multivariate approach combining chemical and volatile analyses. Forensic Science International, 2021, 318, 110569.	2.2	6
159	An Improved Vermicomposting System Provides More Efficient Wastewater Use of Dairy Farms Using Eisenia fetida. Agronomy, 2021, 11, 833.	3.0	6
160	Comparative Proteomic Analysis of Sweet Orange Petiole Provides Insights Into the Development of Huanglongbing Symptoms. Frontiers in Plant Science, 2021, 12, 656997.	3.6	6
161	<i>Bacillus subtilis</i> (Bacillales, Bacillaceae) Spores Affect Survival and Population Growth in the Grain Aphid <i>Sitobion avenae</i> (<i>Hemiptera, Aphididae</i>) in Relation to the Presence of the Facultative Bacterial Endosymbiont <i>Regiella insecticola</i> (Enterobacteriales,) Tj ETQq1 1 0.784314 rgBT /	Overlöck 10) Tf ⁶ 50 92 Td
162	Efficiency of fatty acid-enriched dipteran-based meal on husbandry, digestive activity and immunological responses of Nile tilapia Oreochromis niloticus juveniles. Aquaculture, 2021, 545, 737193.	3.5	6

#	Article	IF	Citations
163	Purification and Characterization of Trehalase From Acyrthosiphon pisum, a Target for Pest Control. Protein Journal, 2022, 41, 189-200.	1.6	6
164	Identification of the Alarm Pheromone of Cowpea Aphid, and Comparison With Two Other Aphididae Species. Journal of Insect Science, 2018, 18, .	1.5	5
165	Insects, The Next European Foodie Craze?. , 2018, , 353-361.		5
166	Diversity and abundance of soil-litter arthropods and their relationships with soil physicochemical properties under different land uses in Rwanda. Biodiversity, 2021, 22, 41-52.	1.1	5
167	Breeding Enhancement of Musca domestica L. 1758: Egg Load as a Measure of Optimal Larval Density. Insects, 2021, 12, 956.	2.2	5
168	Genetic analysis and population structure of the Anopheles gambiae complex from different ecological zones of Burkina Faso. Infection, Genetics and Evolution, 2020, 81, 104261.	2.3	4
169	Differential thermal tolerance across life stages under extreme high temperatures crossed with feeding status in corn leaf aphid. Ecological Entomology, 2021, 46, 533-540.	2.2	4
170	Direct and Indirect Effect via Endophytism of Entomopathogenic Fungi on the Fitness of Myzus persicae and Its Ability to Spread PLRV on Tobacco. Insects, 2021, 12, 89.	2.2	4
171	Biofilm Mode of Cultivation Leads to an Improvement of the Entomotoxic Patterns of Two Aspergillus Species. Microorganisms, 2020, 8, 705.	3.6	3
172	Aphid Feeding on Plant Lectins Falling Virus Transmission Rates: A Multicase Study. Journal of Economic Entomology, 2020, 113, 1635-1639.	1.8	3
173	Resistance to insecticides in Anopheles gambiae complex in West Africa: A review of the current situation and the perspectives for malaria control. International Journal of Tropical Insect Science, 2021, 41, 1-13.	1.0	3
174	Terpene Synthase Gene <i>OtLIS</i> Confers Wheat Resistance to <i>Sitobion avenae</i> by Regulating Linalool Emission. Journal of Agricultural and Food Chemistry, 2021, 69, 13734-13743.	5.2	3
175	Aphid Behavior on Amaranthus hybridus L. (Amaranthaceae) Associated with Ocimum spp. (Lamiaceae) as Repellent Plants. Agronomy, 2020, 10, 736.	3.0	2
176	Host plant adaptability and proteomic differences of diverse Rhopalosiphum maidis (Fitch) lineages. Archives of Insect Biochemistry and Physiology, 2021, 109, e21853.	1.5	2
177	Detection of Alphitobius diaperinus by Real-Time Polymerase Chain Reaction With a Single-Copy Gene Target. Frontiers in Veterinary Science, 2022, 9, 718806.	2.2	2
178	Stingless Bees (Hymenoptera, Apoidea, Meliponini) from Gabon., 2018,, 179-188.		1
179	Protein Elicitor PeaT1 Efficiently Controlled Barley Yellow Dwarf Virus in Wheat. Agriculture (Switzerland), 2019, 9, 193.	3.1	1
180	The taste of origin in a lady beetle: do males discriminate between females based on cuticular hydrocarbons?. Physiological Entomology, 2019, 44, 160-168.	1.5	1

#	Article	IF	CITATIONS
181	Proteomic Investigation on <i>Anopheles gambiae</i> in Burkina Faso Related to Insecticide Pressures from Different Climatic Regions. Proteomics, 2020, 20, e1900400.	2.2	1
182	Multiâ€approach comparative study of the two most prevalent genotypes of pea aphid Acyrthosiphon pisum (Hemiptera: Aphididae) in Chile. Entomological Science, 2021, 24, 55-67.	0.6	0
183	Up-Regulated Salivary Proteins of Brown Marmorated Stink Bug Halyomorpha halys on Plant Growth-Promoting Rhizobacteria-Treated Plants. Journal of Chemical Ecology, 2021, 47, 747-754.	1.8	O
184	Aphid Behavior on Amaranthus hybridus L. (Amaranthaceae) Associated with Ocimum spp. (Lamiaceae) as Repellent Plants., 2020,,.		0
185	Repellent Effect of Basil (Ocimum spp) on Pea Aphid (Acyrthosiphon) Tj ETQq	1 1 0.7843	314 rgBT /Ove