Frédéric Perros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307351/publications.pdf

Version: 2024-02-01

139 papers 10,103 citations

44069 48 h-index 98 g-index

146 all docs

146 docs citations

times ranked

146

10799 citing authors

#	Article	IF	CITATIONS
1	House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Medicine, 2009, 15, 410-416.	30.7	977
2	Pulmonary Arterial Hypertension in Patients Treated by Dasatinib. Circulation, 2012, 125, 2128-2137.	1.6	548
3	Inflammation in pulmonary arterial hypertension. European Respiratory Journal, 2003, 22, 358-363.	6.7	532
4	Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. Circulation, 2015, 131, 1006-1018.	1.6	441
5	Platelet-derived Growth Factor Expression and Function in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 81-88.	5.6	405
6	Diagnosis and Classification of 17 Diseases from 1404 Subjects <i>via</i> Pattern Analysis of Exhaled Molecules. ACS Nano, 2017, 11, 112-125.	14.6	386
7	Inflammation in Pulmonary Arterial Hypertension. Chest, 2012, 141, 210-221.	0.8	333
8	Tertiary lymphoid organs in infection and autoimmunity. Trends in Immunology, 2012, 33, 297-305.	6.8	311
9	Dysregulated Renin–Angiotensin–Aldosterone System Contributes to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 780-789.	5.6	309
10	Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases. Human Pathology, 2007, 38, 893-902.	2.0	291
11	Pulmonary veno-occlusive disease. European Respiratory Journal, 2016, 47, 1518-1534.	6.7	289
12	Pulmonary Lymphoid Neogenesis in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 311-321.	5.6	249
13	Pulmonary arterial hypertension. Orphanet Journal of Rare Diseases, 2013, 8, 97.	2.7	226
14	Role of Endothelium-derived CC Chemokine Ligand 2 in Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1041-1047.	5.6	196
15	C-Kit–Positive Cells Accumulate in Remodeled Vessels of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 116-123.	5.6	176
16	Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. European Respiratory Journal, 2007, 29, 462-468.	6.7	162
17	Chemotherapy-Induced Pulmonary Hypertension. American Journal of Pathology, 2015, 185, 356-371.	3.8	149
18	Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. European Respiratory Journal, 2007, 29, 937-943.	6.7	143

#	Article	IF	CITATIONS
19	Immune Dysregulation and Endothelial Dysfunction in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 1332-1340.	1.6	141
20	Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1371-1385.	1.6	141
21	Blockade of CCR4 in a humanized model of asthma reveals a critical role for DCâ€derived CCL17 and CCL22 in attracting Th2 cells and inducing airway inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 995-1002.	5.7	137
22	Evidence for the Involvement of Type I Interferon in Pulmonary Arterial Hypertension. Circulation Research, 2014, 114, 677-688.	4.5	124
23	Nebivolol for Improving Endothelial Dysfunction, Pulmonary Vascular Remodeling, and Right Heart Function inÂPulmonary Hypertension. Journal of the American College of Cardiology, 2015, 65, 668-680.	2.8	119
24	Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascular Pharmacology, 2008, 49, 113-118.	2.1	118
25	Translating Research into Improved Patient Care in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 583-595.	5.6	113
26	Leptin and regulatory T-lymphocytes in idiopathic pulmonary arterial hypertension. European Respiratory Journal, 2012, 40, 895-904.	6.7	110
27	Mitomycin-Induced Pulmonary Veno-Occlusive Disease. Circulation, 2015, 132, 834-847.	1.6	103
28	miR-223 reverses experimental pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2015, 309, C363-C372.	4.6	103
29	Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1273-1285.	5.6	88
30	Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats. European Respiratory Journal, 2011, 37, 813-822.	6.7	85
31	Targeting of c-kit+ haematopoietic progenitor cells prevents hypoxic pulmonary hypertension. European Respiratory Journal, 2011, 37, 1392-1399.	6.7	85
32	A Critical Role for p130 ^{Cas} in the Progression of Pulmonary Hypertension in Humans and Rodents. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 666-676.	5.6	85
33	The Role of Inflammation and Autoimmunity in the Pathophysiology of Pulmonary Arterial Hypertension. Clinical Reviews in Allergy and Immunology, 2013, 44, 31-38.	6.5	85
34	Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease. European Respiratory Journal, 2015, 46, 1721-1731.	6.7	80
35	Endothelial-to-Mesenchymal Transition. Circulation, 2016, 133, 1734-1737.	1.6	79
36	Nuclear Factor \hat{l}^2 -B Is Activated in the Pulmonary Vessels of Patients with End-Stage Idiopathic Pulmonary Arterial Hypertension. PLoS ONE, 2013, 8, e75415.	2.5	77

#	Article	IF	CITATIONS
37	NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Circulation, 2018, 137, 2371-2389.	1.6	75
38	$\langle i \rangle$ Bmpr $2 \langle j i \rangle$ Mutant Rats Develop Pulmonary and Cardiac Characteristics of Pulmonary Arterial Hypertension. Circulation, 2019, 139, 932-948.	1.6	74
39	T-Helper 17 Cell Polarization in Pulmonary Arterial Hypertension. Chest, 2015, 147, 1610-1620.	0.8	72
40	TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways. Respiratory Research, 2011, 12, 125.	3.6	71
41	Characterization of <i>Kcnk3</i> -Mutated Rat, a Novel Model of Pulmonary Hypertension. Circulation Research, 2019, 125, 678-695.	4.5	70
42	Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension. Biochemical and Biophysical Research Communications, 2014, 451, 8-14.	2.1	69
43	Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in experimental pulmonary hypertension. Respiratory Research, 2011, 12, 119.	3.6	67
44	Potassium channels in pulmonary arterial hypertension. European Respiratory Journal, 2015, 46, 1167-1177.	6.7	64
45	Ca2+ handling remodeling and STIM1L/Orai1/TRPC1/TRPC4 upregulation in monocrotaline-induced right ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 2018, 118, 208-224.	1.9	58
46	Use of \hat{l}^2 -Blockers in Pulmonary Hypertension. Circulation: Heart Failure, 2017, 10, .	3.9	56
47	Cytotoxic Cells and Granulysin in Pulmonary Arterial Hypertension and Pulmonary Veno-occlusive Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 189-196.	5.6	54
48	Tyrosine Kinase Inhibitors in Pulmonary Arterial Hypertension: A Double-Edge Sword?. Seminars in Respiratory and Critical Care Medicine, 2013, 34, 714-724.	2.1	54
49	Beyond the Lungs: Systemic Manifestations of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 148-157.	5.6	53
50	Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension. Cardiovascular Research, 2018, 114, 880-893.	3.8	52
51	Pulmonary vascular remodeling patterns and expression of general control nonderepressible 2 (GCN2) in pulmonary veno-occlusive disease. Journal of Heart and Lung Transplantation, 2018, 37, 647-655.	0.6	50
52	Familial pulmonary arterial hypertension by <i>KDR</i> heterozygous loss of function. European Respiratory Journal, 2020, 55, 1902165.	6.7	49
53	Inflammation in pulmonary hypertension: what we know and what we could logically and safely target first. Drug Discovery Today, 2014, 19, 1251-1256.	6.4	48
54	Sirtuin 1 regulates pulmonary artery smooth muscle cell proliferation. Journal of Hypertension, 2018, 36, 1164-1177.	0.5	48

#	Article	IF	CITATIONS
55	Bromodomain and extraâ€ŧerminal protein mimic <scp>JQ1</scp> decreases inflammation in human vascular endothelial cells: Implications for pulmonary arterial hypertension. Respirology, 2017, 22, 157-164.	2.3	45
56	Transcription Factors, Transcriptional Coregulators, and Epigenetic Modulation in the Control of Pulmonary Vascular Cell Phenotype: Therapeutic Implications for Pulmonary Hypertension (2015) Tj ETQq0 0 0 0	rgB I.†O ver	·loc#410 Tf 50
57	Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension. Oncotarget, 2017, 8, 52995-53016.	1.8	42
58	A Proof of Concept for the Detection and Classification of Pulmonary Arterial Hypertension through Breath Analysis with a Sensor Array. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 756-759.	5.6	40
59	Phenotype and outcome of pulmonary arterial hypertension patients carrying a <i>TBX4</i> mutation. European Respiratory Journal, 2020, 55, 1902340.	6.7	40
60	N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respiratory Research, 2014, 15, 65.	3.6	38
61	Respiratory effects of trichloroethylene. Respiratory Medicine, 2018, 134, 47-53.	2.9	37
62	Current Insights on the Pathogenesis of Pulmonary Arterial Hypertension. Seminars in Respiratory and Critical Care Medicine, 2005, 26, 355-364.	2.1	36
63	Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension. Journal of Heart and Lung Transplantation, 2015, 34, 457-467.	0.6	34
64	Gut–Lung Connection in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 402-405.	2.9	34
65	Systematic Analysis of Blood Cell Transcriptome in End-Stage Chronic Respiratory Diseases. PLoS ONE, 2014, 9, e109291.	2.5	28
66	MicroRNA networks in pulmonary arterial hypertension. Current Opinion in Oncology, 2016, 28, 72-82.	2.4	27
67	Imatinib inhibits bone marrow-derived c-kit+ cell mobilisation in hypoxic pulmonary hypertension. European Respiratory Journal, 2010, 36, 1209-1211.	6.7	25
68	Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes. Proteomics, 2016, 16, 2637-2649.	2.2	25
69	Pulmonary hypertension associated with neurofibromatosis type 1. European Respiratory Review, 2018, 27, 180053.	7.1	25
70	Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells. Respiratory Research, 2015, 16, 114.	3.6	24
71	Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 118-131.	2.9	24
72	The integrated stress response system in cardiovascular disease. Drug Discovery Today, 2018, 23, 920-929.	6.4	22

#	Article	IF	CITATIONS
73	T-type Ca2+ channels elicit pro-proliferative and anti-apoptotic responses through impaired PP2A/Akt1 signaling in PASMCs from patients with pulmonary arterial hypertension. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1631-1641.	4.1	21
74	KCNK3: new gene target for pulmonary hypertension?. Expert Review of Respiratory Medicine, 2014, 8, 385-387.	2.5	20
75	BMPRII influences the response of pulmonary microvascular endothelial cells to inflammatory mediators. Pflugers Archiv European Journal of Physiology, 2016, 468, 1969-1983.	2.8	20
76	In vivo miR-138-5p inhibition alleviates monocrotaline-induced pulmonary hypertension and normalizes pulmonary KCNK3 and SLC45A3 expression. Respiratory Research, 2020, 21, 186.	3.6	20
77	Kcnk3 dysfunction exaggerates the development of pulmonary hypertension induced by left ventricular pressure overload. Cardiovascular Research, 2021, 117, 2474-2488.	3.8	20
78	Understanding the Similarities and Differences between Hepatic and Pulmonary Veno-Occlusive Disease. American Journal of Pathology, 2019, 189, 1159-1175.	3.8	19
79	Vitamin D deficiency downregulates TASK-1 channels and induces pulmonary vascular dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L627-L640.	2.9	19
80	Smooth Muscle Phenotype in Idiopathic Pulmonary Hypertension: Hyper-Proliferative but not Cancerous. International Journal of Molecular Sciences, 2019, 20, 3575.	4.1	17
81	The BET Bromodomain Inhibitor I-BET-151 Induces Structural and Functional Alterations of the Heart Mitochondria in Healthy Male Mice and Rats. International Journal of Molecular Sciences, 2019, 20, 1527.	4.1	17
82	Pulmonary capillary haemangiomatosis: a distinct entity?. European Respiratory Review, 2020, 29, 190168.	7.1	17
83	Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells, 2021, 10, 477.	4.1	16
84	Involvement of CFTR in the pathogenesis of pulmonary arterial hypertension. European Respiratory Journal, 2021, 58, 2000653.	6.7	16
85	Oral 15-Hydroxyeicosatetraenoic Acid Induces Pulmonary Hypertension in Mice by Triggering T Cell–Dependent Endothelial Cell Apoptosis. Hypertension, 2020, 76, 985-996.	2.7	15
86	Early Development of Right Ventricular Ischemic Lesions in a Novel Large Animal Model of Acute Right Heart Failure in Chronic Thromboembolic Pulmonary Hypertension. Journal of Cardiac Failure, 2017, 23, 876-886.	1.7	14
87	Characteristics and Long-term Outcomes of Pulmonary Venoocclusive Disease Induced by Mitomycin C. Chest, 2021, 159, 1197-1207.	0.8	14
88	Phenotype and Outcomes of Pulmonary Hypertension Associated with Neurofibromatosis Type 1. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 843-852.	5.6	12
89	Central Role of Dendritic Cells in Pulmonary Arterial Hypertension in Human and Mice. International Journal of Molecular Sciences, 2021, 22, 1756.	4.1	12
90	The Beneficial Effect of Suramin on Monocrotaline-Induced Pulmonary Hypertension in Rats. PLoS ONE, 2013, 8, e77073.	2.5	11

#	Article	IF	CITATIONS
91	Understanding the Role of CD4+CD25 ^{high} (So-Called Regulatory) T Cells in Idiopathic Pulmonary Arterial Hypertension. Respiration, 2008, 75, 253-256.	2.6	10
92	Circulating fibrocytes and pulmonary arterial hypertension. European Respiratory Journal, 2012, 39, 210-212.	6.7	8
93	Rescuing BMPR2-driven endothelial dysfunction in PAH: a novel treatment strategy for the future?. Stem Cell Investigation, 2017, 4, 56-56.	3.0	8
94	Association between Leflunomide and Pulmonary Hypertension. Annals of the American Thoracic Society, 2021, 18, 1306-1315.	3.2	8
95	An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	8
96	A Simple Method to Assess <i>In Vivo</i> Proliferation in Lung Vasculature with EdU: The Case of MMC-Induced PVOD in Rat. Analytical Cellular Pathology, 2015, 2015, 1-6.	1.4	6
97	Bone Morphogenetic Protein Receptor Type II and Inflammation Are Bringing Old Concepts into the New Pulmonary Arterial Hypertension World. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 777-779.	5. 6	6
98	Pharmacovigilance in a rare disease: example of the VIGIAPATH program in pulmonary arterial hypertension. International Journal of Clinical Pharmacy, 2018, 40, 790-794.	2.1	5
99	Identity crisis in pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-5.	1.7	5
100	Single-cell RNA sequencing reveals that <i>BMPR2</i> mutation regulates right ventricular function <i>via ID</i> genes. European Respiratory Journal, 2022, 60, 2100327.	6.7	5
101	Smouldering fire or conflagration? An illustrated update on the concept of inflammation in pulmonary arterial hypertension. European Respiratory Review, 2021, 30, 210161.	7.1	5
102	S154 Is there a role for IL-33 in the pathogenesis of pulmonary arterial hypertension?. Thorax, 2010, 65, A70-A70.	5 . 6	4
103	CXCL13 in Tertiary Lymphoid Tissues: Sites of Production Are Different from Sites of Functional Localization. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 369-370.	5 . 6	4
104	Response to Letter Regarding Article, "Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Model― Circulation, 2016, 133, e592-3.	1.6	4
105	Trichloroethylene increases pulmonary endothelial permeability: implication for pulmonary venoâ€occlusive disease. Pulmonary Circulation, 2020, 10, 1-4.	1.7	4
106	\hat{l}^2 -blockers in pulmonary arterial hypertension: generation might matter. European Respiratory Journal, 2016, 47, 682-684.	6.7	3
107	Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Communications Biology, 2021, 4, 1002.	4.4	3
108	Chemotherapy-induced pulmonary hypertension: Role of alkylating agents. , 2015, , .		3

#	Article	IF	Citations
109	Cirrhosis ameliorates monocrotaline-induced pulmonary hypertension in rats. European Respiratory Journal, 2009, 34, 731-739.	6.7	2
110	A study of magnesium deficiency in human and experimental pulmonary hypertension. Magnesium Research, 2012, 25, 21-27.	0.5	2
111	Description, Staging and Quantification of Pulmonary Artery Angiophagy in a Large Animal Model of Chronic Thromboembolic Pulmonary Hypertension. Biomedicines, 2020, 8, 493.	3.2	2
112	Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension. , 2020, , 63-70.		2
113	Autoimmunity And Pulmonary Arterial Hypertension: The Role Of Leptin. , 2012, , .		1
114	BET Bromodomain Inhibitors and Pulmonary Arterial Hypertension: Take Care of the Heart. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1187-1188.	5.6	1
115	Olfactory receptors in pulmonary arterial hypertension: A novel pathway of vascular remodeling?. , 2015, , .		1
116	Late Breaking Abstract - Development of an animal model for group 3 Pulmonary Hypertension. , 2018, , .		1
117	Immune repertoire-based signatures in pre-capillary pulmonary hypertension. , 2018, , .		1
118	Inflammation in Pulmonary Arterial Hypertension. , 2012, , 213-229.		1
119	P29 Endothelial cell NF-kB activation is increased in human idiopathic PAH. Thorax, 2010, 65, A88-A89.	5.6	0
120	Oxidative Stress Contributes To Pulmonary Hypertension In Rats Exposed To Monocrotaline. , 2010, , .		0
121	S152 Dexamethasone reverses established monocrotaline-induced pulmonary hypertension in rats and increases pulmonary BMPR2 expression. Thorax, 2010, 65, A68-A69.	5.6	0
122	A Potential Role For Endothelial Cell Derived IL-33 In The Pathogenesis Of Pulmonary Arterial Hypertension. , $2011,\ldots$		0
123	S142â€The role of H3K27 methylation in vascular endothelial cell proliferation and function: implications for pulmonary arterial hypertension. Thorax, 2013, 68, A73.1-A73.	5.6	0
124	Does Circulating IL-17 Identify a Subset of Patients With Idiopathic Pulmonary Arterial Hypertension?: Response. Chest, 2015, 148, e132-e133.	0.8	0
125	S6â€The profiles of JMJD3, UTX and H3K27me3 expression in pulmonary vasculature in rat MCT model of PAH and human iPAH: implications for pulmonary arterial hypertension. Thorax, 2015, 70, A7-A8.	5.6	0
126	Response by Mendes-Ferreira et al to Letter Regarding Article, "Bmpr2 Mutant Rats Develop Pulmonary and Cardiac Characteristics of Pulmonary Arterial Hypertension― Circulation, 2019, 140, e288-e289.	1.6	0

#	Article	IF	Citations
127	Endothelial Cell Nf-Kb Activation Is Increased In Human Idiopathic Pulmonary Arterial Hypertension. , 2011, , .		0
128	LSC Abstract – Glutamatergic signaling through pulmonary vascular NMDA receptors in pulmonary hypertension. , 2015, , .		0
129	Mitomycin-induced pulmonary veno-occlusive disease: Experience from the French pulmonary hypertension network. , 2015, , .		0
130	Pulmonary arterial lesions and interstitial remodeling patterns in histology differentiate EIF2AK4 mutation-carriers from non-carriers with pulmonary veno-occlusive disease. , 2015, , .		0
131	Characterization of a new rat model of heritable PAH. , 2016, , .		0
132	LATE-BREAKING ABSTRACT: Vascular endothelial cells in pulmonary arterial hypertension express a unique spectrum of volatile organic compounds. , 2016, , .		0
133	LATE-BREAKING ABSTRACT: KCNK3 dysfunction contributes to the development of pulmonary arterial hypertension – Characterization of Kcnk3 deficient rats. , 2016, , .		0
134	Bacterial translocation in pulmonary hypertension. , 2017, , .		0
135	Administration of mitomycin results in pulmonary hypertension and vascular remodeling in rabbits. , 2017, , .		0
136	Local inhibition of angiogenesis combined with repeated blood clot embolization induces chronic thromboembolic pulmonary hypertension in rabbits. , 2018, , .		0
137	NMDA receptor activation promotes vascular remodeling and pulmonary arterial hypertension. , 2018,		0
138	KCNK3 channel inactivation leads to pulmonary vascular alterations in rat. , 2018, , .		0
139	Fine structural modifications of heparan sulfate sulfation patterns in lung are associated with functional effects in Precapillary Pulmonary Hypertension. , 2018, , .		O