
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microbial Cell Factories, 2009, 8, 26.	4.0	285
2	Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nature Structural and Molecular Biology, 2012, 19, 136-144.	8.2	272
3	Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnology, 2007, 7, 32.	3.3	231
4	NaLi-H1: A universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. ELife, 2016, 5, .	6.0	231
5	Biotechnological applications of recombinant single-domain antibody fragments. Microbial Cell Factories, 2011, 10, 44.	4.0	153
6	Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol–overexpressed molecular chaperones. Cell Stress and Chaperones, 2005, 10, 329.	2.9	140
7	Immunological applications of single-domain llama recombinant antibodies isolated from a naÃ ⁻ ve library. Protein Engineering, Design and Selection, 2009, 22, 273-280.	2.1	135
8	Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microbial Cell Factories, 2005, 4, 34.	4.0	133
9	The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochemical and Biophysical Research Communications, 2004, 322, 766-771.	2.1	132
10	The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. Journal of Cell Biology, 2009, 187, 1101-1116.	5.2	121
11	Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochemistry, 2005, 6, 10.	4.4	112
12	Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nature Protocols, 2007, 2, 2632-2639.	12.0	107
13	Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO Journal, 2005, 24, 3519-3531.	7.8	98
14	The Complexity of Enzymic Control of Hydrogen Peroxide Concentration May Affect the Regeneration Potential of Plant Protoplasts. Plant Physiology, 1996, 110, 137-145.	4.8	92
15	Impairment of Cytoplasmic elF6 Activity Restricts Lymphomagenesis and Tumor Progression without Affecting Normal Growth. Cancer Cell, 2011, 19, 765-775.	16.8	90
16	Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood, 2013, 122, 705-714.	1.4	79
17	Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiology Reviews, 2019, 43, 53-72.	8.6	77
18	Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning. Journal of Biotechnology, 2004, 109, 45-52.	3.8	71

#	Article	IF	CITATIONS
19	Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expression and Purification, 2020, 172, 105645.	1.3	68
20	Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnology, 2007, 7, 7.	3.3	66
21	The osmolyte betaine promotes protein misfolding and disruption of protein aggregates. Proteins: Structure, Function and Bioinformatics, 2009, 75, 509-517.	2.6	64
22	Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase. Protein Expression and Purification, 2011, 79, 111-114.	1.3	61
23	Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies. Microbial Cell Factories, 2014, 13, 140.	4.0	61
24	Crystal structure of the catalytic domain of Haspin, an atypical kinase implicated in chromatin organization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20204-20209.	7.1	58
25	Nanobody-functionalized PEC-b-PCL polymersomes and their targeting study. Journal of Biotechnology, 2015, 214, 147-155.	3.8	52
26	Urinary extracellular vesicle biomarkers in urological cancers: From discovery towards clinical implementation. International Journal of Biochemistry and Cell Biology, 2018, 99, 236-256.	2.8	48
27	Hydrogen peroxide plays a bivalent role in the regeneration of protoplasts. Journal of Plant Physiology, 1996, 149, 109-114.	3.5	46
28	Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microbial Cell Factories, 2015, 14, 125.	4.0	43
29	Community-Wide Experimental Evaluation of the PROSS Stability-Design Method. Journal of Molecular Biology, 2021, 433, 166964.	4.2	42
30	Effects of recombinant protein misfolding and aggregation on bacterial membranes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 263-269.	2.3	41
31	Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts. Phytochemistry, 1997, 46, 421-425.	2.9	38
32	Isolation of Tobacco Isoperoxidases Accumulated in Cell-Suspension Culture Medium and Characterization of Activities Related to Cell Wall Metabolism1. Plant Physiology, 1999, 120, 371-382.	4.8	36
33	Electrochemical immunosensor functionalized with nanobodies for the detection of the toxic microalgae Alexandrium minutum using glassy carbon electrode modified with gold nanoparticles. Biosensors and Bioelectronics, 2020, 154, 112052.	10.1	36
34	A monoclonal antibody against mutated nucleophosmin 1 for the molecular diagnosis of acute myeloid leukemias. Blood, 2010, 116, 2096-2102.	1.4	35
35	Knock-in of Oncogenic <i>Kras</i> Does Not Transform Mouse Somatic Cells But Triggers a Transcriptional Response that Classifies Human Cancers. Cancer Research, 2007, 67, 8468-8476.	0.9	32
36	Meeting Report from the Second "Minimum Information for Biological and Biomedical Investigations― (MIBBI) workshop. Standards in Genomic Sciences, 2010, 3, 259-266.	1.5	32

#	Article	IF	CITATIONS
37	Isolation of anti-extra-cellular vesicle single-domain antibodies by direct panning on vesicle-enriched fractions. Microbial Cell Factories, 2018, 17, 6.	4.0	32
38	A consensus protocol for the <i>in silico</i> optimisation of antibody fragments. Chemical Communications, 2019, 55, 14043-14046.	4.1	32
39	Preparation of a NaÃ ⁻ ve Library of Camelid Single Domain Antibodies. Methods in Molecular Biology, 2012, 911, 65-78.	0.9	31
40	Binding affinity prediction of nanobody–protein complexes by scoring of molecular dynamics trajectories. Physical Chemistry Chemical Physics, 2018, 20, 3438-3444.	2.8	31
41	Physical and chemical perturbations induce the formation of protein aggregates with different structural features. Protein Expression and Purification, 2008, 58, 356-361.	1.3	29
42	Evidence for two different nitrate-reducing activities at the plasma membrane in roots of Zea mays L Planta, 1994, 194, 557-564.	3.2	28
43	Recombinant proteins fused to thermostable partners can be purified by heat incubation. Journal of Biotechnology, 2004, 107, 125-133.	3.8	28
44	Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Frontiers in Immunology, 2021, 12, 838082.	4.8	27
45	Nanobodies against surface biomarkers enable the analysis of tumor genetic heterogeneity in uveal melanoma patientâ€derived xenografts. Pigment Cell and Melanoma Research, 2017, 30, 317-327.	3.3	26
46	Recombinant Maize Protoporphyrinogen IX Oxidase Expressed in Escherichia coli Forms Complexes with GroEL and DnaK Chaperones. Protein Expression and Purification, 2000, 20, 81-86.	1.3	25
47	Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Scientific Reports, 2016, 6, 34869.	3.3	25
48	Quality control of protein reagents for the improvement of research data reproducibility. Nature Communications, 2021, 12, 2795.	12.8	25
49	The Vaccinia Virus E8R Gene Product: a Viral Membrane Protein That Is Made Early in Infection and Packaged into the Virions' Core. Journal of Virology, 2002, 76, 9773-9786.	3.4	24
50	Minimal information: an urgent need to assess the functional reliability of recombinant proteins used in biological experiments. Microbial Cell Factories, 2008, 7, 20.	4.0	24
51	Screening optimized protein purification protocols by coupling small-scale expression and mini-size exclusion chromatography. Protein Expression and Purification, 2010, 74, 231-235.	1.3	24
52	Single domain antibodies with VH hallmarks are positively selected during panning of llama (Lama) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
53	Recent contributions in the field of the recombinant expression of disulfide bonded protein in bacteria. Microbial Cell Factories, 2012, 11, 129.	4.0	24

#	Article	IF	CITATIONS
55	Recombinant polypeptide production in E. coli: towards a rational approach to improve the yields of functional proteins. Microbial Cell Factories, 2013, 12, 101.	4.0	23
56	Quantification of Circulating Cancer Biomarkers via Sensitive Topographic Measurements on Single Binder Nanoarrays. ACS Omega, 2017, 2, 2618-2629.	3.5	23
57	Dimerization properties of a Xenopus laevis kinesinâ€l carboxyâ€ŧerminal stalk fragment. EMBO Reports, 2003, 4, 717-722.	4.5	22
58	The evaluation of the factors that cause aggregation during recombinant expression in E. coli is simplified by the employment of an aggregation-sensitive reporter. Microbial Cell Factories, 2006, 5, 28.	4.0	22
59	Whole-cell biopanning with a synthetic phage display library of nanobodies enabled the recovery of follicle-stimulating hormone receptor inhibitors. Biochemical and Biophysical Research Communications, 2017, 493, 1567-1572.	2.1	22
60	Comparative analysis of protein aggregates by blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a three-dimensional geometry gel. Proteomics, 2005, 5, 2002-2009.	2.2	20
61	The solubility of recombinant proteins expressed in Escherichia coli is increased by otsA and otsB co-transformation. Biochemical and Biophysical Research Communications, 2007, 355, 234-239.	2.1	20
62	The Biotechnological Applications of Recombinant Single-Domain Antibodies are Optimized by the C-Terminal Fusion to the EPEA Sequence (C Tag). Antibodies, 2014, 3, 182-191.	2.5	20
63	Two-step metal affinity purification of double-tagged (NusA–His6) fusion proteins. Nature Protocols, 2006, 1, 1538-1543.	12.0	19
64	Canonical and selective approaches in exosome purification and their implications for diagnostic accuracy. Translational Cancer Research, 2018, 7, S209-S225.	1.0	19
65	Fusion tags and chaperone co-expression modulate both the solubility and the inclusion body features of the recombinant CLIPB14 serine protease. Journal of Biotechnology, 2005, 120, 2-10.	3.8	17
66	Single-domain antibodies that compete with the natural ligand fibroblast growth factor block the internalization of the fibroblast growth factor receptor 1. Biochemical and Biophysical Research Communications, 2011, 408, 692-696.	2.1	17
67	Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 12341-12354.	6.7	17
68	The Availability of a Recombinant Anti-SNAP Antibody in VHH Format Amplifies the Application Flexibility of SNAP-Tagged Proteins. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	16
69	Induced fit of passenger proteins fused to Archaea maltose binding proteins. Biochemical and Biophysical Research Communications, 2006, 344, 25-29.	2.1	15
70	Evaluation of a novel human IgG1 anti-claudin3 antibody that specifically recognizes its aberrantly localized antigen in ovarian cancer cells and that is suitable for selective drug delivery. Oncotarget, 2015, 6, 34617-34628.	1.8	15
71	Affinity-based isolation of extracellular vesicles by means of single-domain antibodies bound to macroporous methacrylate-based copolymer. New Biotechnology, 2022, 69, 36-48.	4.4	15
72	Antibody-mediated purification of co-expressed antigen–antibody complexes. Protein Expression and Purification, 2010, 72, 55-58.	1.3	14

#	Article	IF	CITATIONS
73	Molecular and Chemical Chaperones for Improving the Yields of Soluble Recombinant Proteins. Methods in Molecular Biology, 2011, 705, 31-51.	0.9	14
74	Antibody purification-independent microarrays (PIM) by direct bacteria spotting on TiO2-treated slides. Methods, 2012, 56, 317-325.	3.8	14
75	Nanomaterial bio-activation and macromolecules functionalization: The search for reliable protocols. Protein Expression and Purification, 2018, 147, 49-54.	1.3	14
76	In vitro isolation of nanobodies for selective Alexandrium minutum recognition: A model for convenient development of dedicated immuno-reagents to study and diagnostic toxic unicellular algae. Harmful Algae, 2019, 82, 44-51.	4.8	14
77	Effect of Humanizing Mutations on the Stability of the Llama Single-Domain Variable Region. Biomolecules, 2021, 11, 163.	4.0	14
78	Antigenic features of protein carriers commonly used in immunisation trials. Biotechnology Letters, 2010, 32, 1215-1221.	2.2	13
79	Specific features of the ascorbate/glutathione cycle in cultured protoplasts. Plant Cell Reports, 1999, 18, 406-411.	5.6	12
80	Comparative analysis of fusion tags used to functionalize recombinant antibodies. Protein Expression and Purification, 2020, 166, 105505.	1.3	12
81	Nanobody-Dependent Detection of Microcystis aeruginosa by ELISA and Thermal Lens Spectrometry. Applied Biochemistry and Biotechnology, 2021, 193, 2729-2741.	2.9	11
82	Expression, purification and characterization of SARS-CoV-2 spike RBD in ExpiCHO cells. Protein Expression and Purification, 2022, 194, 106071.	1.3	11
83	Possible interaction between peroxidase and NAD(P)H-dependent nitrate reductase activities of plasma membranes of corn roots. Journal of Experimental Botany, 1995, 46, 1677-1683.	4.8	10
84	The Trip Adviser guide to the protein science world: a proposal to improve the awareness concerning the quality of recombinant proteins. BMC Research Notes, 2014, 7, 585.	1.4	10
85	Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review 31. British Journal of Pharmacology, 2021, 178, 3359-3372.	5.4	10
86	Native llama Nanobody Library Panning Performed by Phage and Yeast Display Provides Binders Suitable for C-Reactive Protein Detection. Biosensors, 2021, 11, 496.	4.7	10
87	Monoclonal antibodies isolated by large-scale screening are suitable for labeling adult zebrafish (Danio rerio) tissues and cell structures. Journal of Immunological Methods, 2009, 346, 9-17.	1.4	9
88	A compact nanobody-DNAzyme conjugate enables antigen detection and signal amplification. New Biotechnology, 2020, 56, 1-8.	4.4	9
89	A step ahead: combining protein purification and correct folding selection. Microbial Cell Factories, 2004, 3, 12.	4.0	8
90	Minimal information for protein functional evaluation (MIPFE) workshop. New Biotechnology, 2009, 25, 170.	4.4	8

#	Article	IF	CITATIONS
91	Recombinant protein quality evaluation: proposal for a minimal information standard. Standards in Genomic Sciences, 2011, 5, 195-197.	1.5	8
92	Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS Applied Materials & amp; Interfaces, 2021, 13, 29406-29415.	8.0	8
93	Perspectives Offered by Single-Domain Antibodies in Clinical Diagnostic of Pediatric Tumors. Current Medicinal Chemistry, 2013, 20, 2188-2194.	2.4	8
94	The concurrent use of N- and C-terminal antibodies anti-nucleophosmin 1 in immunofluorescence experiments allows for precise assessment of its subcellular localisation in acute myeloid leukaemia patients. Leukemia, 2012, 26, 159-162.	7.2	7
95	Nanobody-functionalized polymersomes. Journal of Controlled Release, 2015, 213, e79-e80.	9.9	7
96	User-Friendly Expression Plasmids Enable the Fusion of VHHs to Application-Specific Tags. Methods in Molecular Biology, 2012, 911, 507-522.	0.9	6
97	Co-expression and Co-purification of Antigen–Antibody Complexes in Bacterial Cytoplasm and Periplasm. Methods in Molecular Biology, 2014, 1129, 125-135.	0.9	6
98	Engineered crossâ€reacting nanobodies simplify comparative oncology between humans and dogs. Veterinary and Comparative Oncology, 2018, 16, E202-E206.	1.8	6
99	Peroxidase zymograms obtained by agarose native gel electrophoresis have unmet resolution and completeness. International Journal of Biological Macromolecules, 2020, 156, 869-873.	7.5	6
100	Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey. European Biophysics Journal, 2021, 50, 453-460.	2.2	6
101	Monodispersity of recombinant Cre recombinase correlates with its effectiveness in vivo. BMC Biotechnology, 2009, 9, 80.	3.3	5
102	Comparison and critical analysis of robotized technology for monoclonal antibody highâ€ŧhroughput production. Biotechnology Progress, 2011, 27, 571-576.	2.6	5
103	Methodologies for the isolation of alternative binders with improved clinical potentiality over conventional antibodies. Critical Reviews in Biotechnology, 2013, 33, 40-48.	9.0	5
104	An intrabody specific for the nucleophosmin carboxy-terminal mutant and fused to a nuclear localization sequence binds its antigen but fails to relocate it in the nucleus. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3, 27-33.	4.4	5
105	Identification of environmental stress biomarkers in seedlings of European beech (Fagus sylvatica) and Scots pine (Pinus sylvestris). Canadian Journal of Forest Research, 2016, 46, 58-66.	1.7	5
106	Purification-independent immunoreagents obtained by displaying nanobodies on bacteria surface. Applied Microbiology and Biotechnology, 2019, 103, 4443-4453.	3.6	5
107	An anti-HER2 nanobody binds to its antigen HER2 via two independent paratopes. International Journal of Biological Macromolecules, 2021, 182, 502-511.	7.5	5
108	Protein purification strategies must consider downstream applications and individual biological characteristics. Microbial Cell Factories, 2022, 21, 52.	4.0	5

#	Article	IF	CITATIONS
109	Correct identification of the chloroplastic protoporphyrinogen IX oxidase N-terminus places the biochemical data in frame. Biochemical and Biophysical Research Communications, 2003, 309, 873-878.	2.1	4
110	Automated protein analysis by online detection of laser-induced fluorescence in slab gels and 3-D geometry gels. Electrophoresis, 2006, 27, 3338-3348.	2.4	4
111	Interference of p53:Twist1 interaction through competing nanobodies. International Journal of Biological Macromolecules, 2022, 194, 24-31.	7.5	4
112	Reagent validation: an underestimated issue in laboratory practice. Journal of Molecular Recognition, 2011, 24, 136-136.	2.1	3
113	CDR1 Composition Can Affect Nanobody Recombinant Expression Yields. Biomolecules, 2021, 11, 1362.	4.0	3
114	Recombinant Proteins Co-Expressed and Co-Purified in the Presence of Antibody Fragments. Methods in Molecular Biology, 2021, 2178, 93-103.	0.9	3
115	The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles. Science China Materials, 2022, 65, 1662-1670.	6.3	3
116	A (musical) note on protein purification. FASEB Journal, 2010, 24, 6-6.	0.5	2
117	Optimization of Purification Protocols Based on the Step-by-Step Monitoring of the Protein Aggregates in Soluble Fractions. Methods in Molecular Biology, 2012, 824, 145-154.	0.9	2
118	Conflict of interests: Multiple signal peptides with diverging goals. Journal of Cellular Biochemistry, 2013, 114, 510-513.	2.6	2
119	Metrics and evaluation of scientific productivity: would it be useful to normalize the data taking in consideration the investments?. Microbial Cell Factories, 2019, 18, 181.	4.0	2
120	Isolation of Recombinant Antibodies That Recognize Native and Accessible Membrane Biomarkers. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 49-66.	0.5	2
121	Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase. Methods in Molecular Biology, 2022, 2446, 145-157.	0.9	2
122	Strategies for Boosting the Accumulation of Correctly Folded Recombinant Proteins Expressed in Escherichia coli. Methods in Molecular Biology, 2011, 752, 1-15.	0.9	1
123	Identification of stress biomarkers for drought and increased soil temperature in seedlings of European beech (Fagus sylvatica). Canadian Journal of Forest Research, 2017, 47, 1517-1526.	1.7	1
124	Acting on Folding Effectors to Improve Recombinant Protein Yields and Functional Quality. Methods in Molecular Biology, 2017, 1586, 197-210.	0.9	0
125	Good reasons for targeting SARS-CoV-2 by engineered extracellular vesicles. Molecular Therapy - Methods and Clinical Development, 2022, 25, 41-42.	4.1	0