Daniel K Manter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307090/publications.pdf

Version: 2024-02-01

69 papers 6,976 citations

36 h-index 91884 69 g-index

73 all docs

73 docs citations

73 times ranked 8890 citing authors

#	Article	IF	CITATIONS
1	Conditioned soils reveal plant-selected microbial communities that impact plant drought response. Scientific Reports, 2021, 11, 21153.	3.3	13
2	Differential Effects of Phosphorus Fertilization on Plant Uptake and Rhizosphere Microbiome of Cultivated and Non-cultivated Potatoes. Microbial Ecology, 2020, 80, 169-180.	2.8	18
3	Rhizosphere Ecology., 2019, , 574-578.		1
4	Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere, 2019, 12, 100176.	3.0	37
5	A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Scientific Reports, 2019, 9, 7521.	3.3	34
6	Soil Microbial Communities on Roughs, Fairways, and Putting Greens of Coolâ€Season Golf Courses. Crop Science, 2019, 59, 1753-1767.	1.8	10
7	Influence of long-term nitrogen fertilization on crop and soil micronutrients in a no-till maize cropping system. Field Crops Research, 2018, 228, 170-182.	5.1	26
8	Phosphorus addition shifts the microbial community in the rhizosphere of blueberry (Vaccinium) Tj ETQq0 0 0 rg	;BT JOverlo	ock 10 Tf 50 4
9	Interactions of Stover and Nitrogen Management on Soil Microbial Community and Labile Carbon under Irrigated Noâ€Till Corn. Soil Science Society of America Journal, 2018, 82, 323-331.	2.2	21
10	Genotype-specific response of winter wheat (Triticum aestivum L.) to irrigation and inoculation with ACC deaminase bacteria. Rhizosphere, 2018, 8, 1-7.	3.0	13
11	Integrated soil health management: a framework for soil conservation and regeneration. Burleigh Dodds Series in Agricultural Science, 2018, , 69-87.	0.2	1
12	Bacterial Microbiome and Nematode Occurrence in Different Potato Agricultural Soils. Microbial Ecology, 2017, 74, 888-900.	2.8	51
13	Nematode communities on putting greens, fairways, and roughs of organic and conventional cool-season golf courses. Applied Soil Ecology, 2017, 121, 161-171.	4.3	9
14	Isolation of Cultivation-Resistant Oomycetes, First Detected as Amplicon Sequences, from Roots of Herbicide-Terminated Winter Rye. Phytobiomes Journal, 2017, 1, 24-35.	2.7	34
15	Mitsuaria sp. and Burkholderia sp. from Arabidopsis rhizosphere enhance drought tolerance in Arabidopsis thaliana and maize (Zea mays L.). Plant and Soil, 2017, 419, 523-539.	3.7	58
16	Genotype-Specific Enrichment of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Positive Bacteria in Winter Wheat Rhizospheres. Soil Science Society of America Journal, 2017, 81, 796-805.	2.2	17
17	Why we need a National Living Soil Repository. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13587-13590.	7.1	22
18	myPhyloDB: a local web server for the storage and analysis of metagenomic data. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw037.	3.0	24

#	Article	IF	Citations
19	Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Applied Soil Ecology, 2016, 107, 324-333.	4.3	257
20	Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant and Soil, 2016, 401, 259-272.	3.7	104
21	Roots from distinct plant developmental stages are capable of rapidly selecting their own microbiome without the influence of environmental and soil edaphic factors. Soil Biology and Biochemistry, 2015, 89, 206-209.	8.8	69
22	Estimating beta diversity for under-sampled communities using the variably weighted Odum dissimilarity index and OTUshuff. Bioinformatics, 2015, 31, 3451-3459.	4.1	5
23	Site and Clone Effects on the Potato Root-Associated Core Microbiome and its Relationship to Tuber Yield and Nutrients. American Journal of Potato Research, 2015, 92, 1-9.	0.9	26
24	Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil, 2015, 392, 115-126.	3.7	155
25	Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation. Sustainability, 2015, 7, 988-1027.	3.2	254
26	Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth. Bioresource Technology, 2014, 169, 162-168.	9.6	8
27	Effect of Plant Sterols and Tannins on Phytophthora ramorum Growth and Sporulation. Journal of Chemical Ecology, 2013, 39, 733-743.	1.8	19
28	Ethanol Attracts Scolytid Beetles to Phytophthora ramorum Cankers on Coast Live Oak. Journal of Chemical Ecology, 2013, 39, 494-506.	1.8	39
29	Relationships between <i>Arabidopsis</i> genotype-specific biomass accumulation and associated soil microbial communities. Botany, 2013, 91, 123-126.	1.0	46
30	Isolation and characterization of ligninâ€degrading bacteria from rainforest soils. Biotechnology and Bioengineering, 2013, 110, 1616-1626.	3.3	135
31	Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 2013, 68, 1-9.	4.3	207
32	Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytologist, 2013, 198, 264-273.	7.3	245
33	Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients and Healthy Adults. PLoS ONE, 2013, 8, e70803.	2.5	547
34	Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions. PLoS ONE, 2013, 8, e55731.	2.5	484
35	Influence of ATP-Binding Cassette Transporters in Root Exudation of Phytoalexins, Signals, and in Disease Resistance. Frontiers in Plant Science, 2012, 3, 149.	3.6	26
36	Lignocellulose Decomposition by Microbial Secretions. Signaling and Communication in Plants, 2012, , $125\text{-}153$.	0.7	9

#	Article	IF	CITATIONS
37	Biotransformation of Ferulic Acid to 4-Vinylguaiacol by Enterobacter soli and E. aerogenes. Current Microbiology, 2012, 65, 752-757.	2.2	14
38	Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 2012, 360, 1-13.	3.7	347
39	Coadaptationary Aspects of the Underground Communication Between Plants and Other Organisms. Signaling and Communication in Plants, 2012, , 361-375.	0.7	1
40	Pseudomonas kuykendallii sp. nov.: A Novel \hat{I}^3 -Proteobacteria Isolated From a Hexazinone Degrading Bioreactor. Current Microbiology, 2012, 65, 170-175.	2.2	9
41	Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 2012, 48, 489-499.	4.3	859
42	Root Secreted Metabolites and Proteins Are Involved in the Early Events of Plant-Plant Recognition Prior to Competition. PLoS ONE, 2012, 7, e46640.	2.5	54
43	Pseudomonas seleniipraecipitatus sp. nov.: A Selenite Reducing γ-Proteobacteria Isolated from Soil. Current Microbiology, 2011, 62, 565-569.	2.2	23
44	Increased Electrical Output when a Bacterial ABTS Oxidizer is Used in a Microbial Fuel Cell. Current Microbiology, 2011, 62, 633-638.	2.2	8
45	Enterobacter soli sp. nov.: A Lignin-Degrading γ-Proteobacteria Isolated from Soil. Current Microbiology, 2011, 62, 1044-1049.	2.2	56
46	Pyrosequencing Reveals a Highly Diverse and Cultivar-Specific Bacterial Endophyte Community in Potato Roots. Microbial Ecology, 2010, 60, 157-166.	2.8	256
47	Negative Effects of Sample Pooling on PCR-Based Estimates of Soil Microbial Richness and Community Structure. Applied and Environmental Microbiology, 2010, 76, 2086-2090.	3.1	46
48	Pyrosequencing Assessment of Soil Microbial Communities in Organic and Conventional Potato Farms. Plant Disease, 2010, 94, 1329-1335.	1.4	109
49	An ABC Transporter Mutation Alters Root Exudation of Phytochemicals That Provoke an Overhaul of Natural Soil Microbiota Â. Plant Physiology, 2009, 151, 2006-2017.	4.8	263
50	Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed. BMC Plant Biology, 2009, 9, 33.	3.6	30
51	Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5. Current Microbiology, 2009, 58, 493-498.	2.2	93
52	Bio-Reduction of Selenite to Elemental Red Selenium by Tetrathiobacter kashmirensis. Current Microbiology, 2008, 57, 83-88.	2,2	58
53	Root Exudates Regulate Soil Fungal Community Composition and Diversity. Applied and Environmental Microbiology, 2008, 74, 738-744.	3.1	659
54	Predicting effects of climate change on Swiss needle cast disease severity in Pacific Northwest forests. Canadian Journal of Plant Pathology, 2008, 30, 169-176.	1.4	54

#	Article	IF	CITATIONS
55	A molecular approach to understanding plant - plant interactions in the context of invasion biology. Functional Plant Biology, 2008, 35, 1123.	2.1	11
56	Photosynthetic Declines in Phytophthora ramorum-Infected Plants Develop Prior to Water Stress and in Response to Exogenous Application of Elicitins. Phytopathology, 2007, 97, 850-856.	2.2	24
57	Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis. Journal of Microbiological Methods, 2007, 71, 7-14.	1.6	219
58	Soil fungal abundance and diversity: another victim of the invasive plant <i>Centaurea maculosa</i> ISME Journal, 2007, 1, 763-765.	9.8	72
59	Antimicrobial Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum. Journal of Chemical Ecology, 2007, 33, 2133-2147.	1.8	51
60	A Climate-Based Model for Predicting Geographic Variation in Swiss Needle Cast Severity in the Oregon Coast Range. Phytopathology, 2005, 95, 1256-1265.	2.2	73
61	Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates. Tree Physiology, 2005, 25, 1015-1021.	3.1	49
62	A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. Journal of Experimental Botany, 2004, 55, 2581-2588.	4.8	162
63	Effect of Swiss needle cast on Douglas-fir stem ethanol and monoterpene concentrations, oleoresin flow, and host selection by the Douglas-fir beetle. Forest Ecology and Management, 2004, 190, 241-253.	3.2	7
64	Stomatal regulation in Douglas fir following a fungal-mediated chronic reduction in leaf area. Trees - Structure and Function, 2003, 17, 485-491.	1.9	13
65	Modelling the impacts of the foliar pathogen, Phaeocryptopus gaeumannii, on Douglas-fir physiology: net canopy carbon assimilation, needle abscission and growth. Ecological Modelling, 2003, 164, 211-226.	2.5	40
66	Comparison of Biochemical, Molecular, and Visual Methods to Quantify Phaeocryptopus gaeumannii in Douglas-Fir Foliage. Phytopathology, 2003, 93, 121-126.	2.2	39
67	Interaction of Microorganisms, Insects, and Freezing Injury on Conifers. Tree Physiology, 2001, , 289-304.	2,5	2
68	Pseudothecia of Swiss needle cast fungus, Phaeocryptopus gaeumannii , physically block stomata of Douglas fir, reducing CO 2 assimilation. New Phytologist, 2000, 148, 481-491.	7.3	74
69	Influence of thawing rate and fungal infection by <i>Rhizosphaera kalkhoffii</i> on freezing injury in red spruce (<i>Picea rubens</i>) needles. Canadian Journal of Forest Research, 1996, 26, 918-927.	1.7	7