
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1307035/publications.pdf Version: 2024-02-01

NANCY | DUDNEY

#	Article	IF	CITATIONS
1	Comparing the Purity of Rolled versus Evaporated Lithium Metal Films Using X-ray Microtomography. ACS Energy Letters, 2022, 7, 1120-1124.	8.8	11
2	Elucidating Interfacial Stability between Lithium Metal Anode and Li Phosphorus Oxynitride via <i>In Situ</i> Electron Microscopy. Nano Letters, 2021, 21, 151-157.	4.5	36
3	Multifunctional Utilization of Pitchâ€Coated Carbon Fibers in Lithiumâ€Based Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2100135.	10.2	25
4	Effects of Plasticizer Content and Ceramic Addition on Electrochemical Properties of Cross-Linked Polymer Electrolyte. Journal of the Electrochemical Society, 2021, 168, 050549.	1.3	9
5	Practical Considerations for Testing Polymer Electrolytes for High-Energy Solid-State Batteries. ACS Energy Letters, 2021, 6, 2240-2247.	8.8	40
6	Local electronic structure variation resulting in Li â€~filament' formation within solid electrolytes. Nature Materials, 2021, 20, 1485-1490.	13.3	226
7	Multifunctional approaches for safe structural batteries. Journal of Energy Storage, 2021, 40, 102747.	3.9	33
8	Gel composite electrolyte – an effective way to utilize ceramic fillers in lithium batteries. Journal of Materials Chemistry A, 2021, 9, 6555-6566.	5.2	14
9	Resistance to fracture in the glassy solid electrolyte Lipon. Journal of Materials Research, 2021, 36, 787-796.	1.2	21
10	A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Storage Materials, 2020, 26, 242-249.	9.5	70
11	Electroanalytical Measurement of Interphase Formation at a Li Metal–Solid Electrolyte Interface. ACS Energy Letters, 2020, 5, 3860-3867.	8.8	14
12	Polymer–Ceramic Composite Electrolytes for Lithium Batteries: A Comparison between the Single-Ion-Conducting Polymer Matrix and Its Counterpart. ACS Applied Energy Materials, 2020, 3, 8871-8881.	2.5	30
13	Exploiting the Oxygen Redox Reaction and Crystal-Preferred Orientation in a P3-Type Na _{2/3} Mg _{1/3} Mn _{2/3} O ₂ Thin-Film Electrode. Energy & Fuels, 2020, 34, 7692-7699.	2.5	5
14	Plasma Synthesis of Spherical Crystalline and Amorphous Electrolyte Nanopowders for Solid-State Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11570-11578.	4.0	15
15	Study of the Segmental Dynamics and Ion Transport of Solid Polymer Electrolytes in the Semi-crystalline State. Frontiers in Chemistry, 2020, 8, 592604.	1.8	8
16	Electroanalytical Characterization of the Interphase between the Solid Electrolyte Lipon and Li Metal. ECS Meeting Abstracts, 2020, MA2020-02, 1025-1025.	0.0	0
17	Understanding How Structure and Crystallinity Affect Performance in Solid-State Batteries Using a Glass Ceramic LiV ₃ O ₈ Cathode. Chemistry of Materials, 2019, 31, 6135-6144.	3.2	13
18	On the mechanisms of stress relaxation and intensification at the lithium/solid-state electrolyte interface. Journal of Materials Research, 2019, 34, 3593-3616.	1.2	30

NANCY J DUDNEY

#	Article	IF	CITATIONS
19	Determining and Minimizing Resistance for Ion Transport at the Polymer/Ceramic Electrolyte Interface. ACS Energy Letters, 2019, 4, 1080-1085.	8.8	52
20	Study of segmental dynamics and ion transport in polymer–ceramic composite electrolytes by quasi-elastic neutron scattering. Molecular Systems Design and Engineering, 2019, 4, 379-385.	1.7	31
21	Deposition and Confinement of Li Metal along an Artificial Lipon–Lipon Interface. ACS Energy Letters, 2019, 4, 651-655.	8.8	87
22	Modeling of all-solid-state thin-film Li-ion batteries: Accuracy improvement. Solid State Ionics, 2019, 334, 111-116.	1.3	39
23	High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 2019, 4, 187-196.	19.8	1,099
24	Structure and Electrochemistry of LiV3O8 Thin Film Electrode: Effect of Diffusion Rate and Concentration on Cell Polarization. ECS Meeting Abstracts, 2019, , .	0.0	0
25	A Three-Dimensional, Interconnected Composite As a Thin Film Solid Electrolyte. ECS Meeting Abstracts, 2019, , .	0.0	0
26	Precision Electroanalytical Measurements of Li/Solid-State Electrolyte Interfaces. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Lipon-like Electrolyte Powders Made By Scalable Alternative Processing. ECS Meeting Abstracts, 2019, ,	0.0	0
28	(Invited) Thin Film Batteries Still Have Interesting Lessons for Lithium Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
29	(Invited) Mechanisms of Stress Relaxation and Intensification at the Lithium/Solid Electrolyte Interface. ECS Meeting Abstracts, 2019, , .	0.0	0
30	Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings. Journal of Power Sources, 2018, 390, 153-164.	4.0	68
31	Approaches toward lithium metal stabilization. MRS Bulletin, 2018, 43, 752-758.	1.7	12
32	Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow. Journal of Materials Research, 2018, 33, 1347-1360.	1.2	55
33	Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus. Journal of Materials Research, 2018, 33, 1335-1346.	1.2	38
34	Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow. Journal of Materials Research, 2018, 33, 1361-1368.	1.2	44
35	Resolving the Amorphous Structure of Lithium Phosphorus Oxynitride (Lipon). Journal of the American Chemical Society, 2018, 140, 11029-11038.	6.6	99
36	Lithium Transport in an Amorphous Li _{<i>x</i>} Si Anode Investigated by Quasi-elastic Neutron Scattering. Journal of Physical Chemistry C, 2017, 121, 11083-11088.	1.5	15

#	Article	IF	CITATIONS
37	Lithium Vanadium Oxide (Li _{1.1} V ₃ O ₈) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry. Journal of the Electrochemical Society, 2017, 164, A1503-A1513.	1.3	9
38	Evolution of the lithium morphology from cycling of thin film solid state batteries. Journal of Electroceramics, 2017, 38, 222-229.	0.8	18
39	In situ stress measurements during electrochemical cycling of lithium-rich cathodes. Journal of Power Sources, 2017, 364, 383-391.	4.0	18
40	Integrating Novel Microscopy into Battery Research: From Atomic Resolution to In Situ and Functional Imaging. Microscopy and Microanalysis, 2017, 23, 1998-1999.	0.2	0
41	In situ Nanoscale Imaging and Spectroscopy of Energy Storage Materials. Microscopy and Microanalysis, 2017, 23, 1964-1965.	0.2	0
42	Interfacial Stability of Li Metal–Solid Electrolyte Elucidated via in Situ Electron Microscopy. Nano Letters, 2016, 16, 7030-7036.	4.5	309
43	A "Hidden―Mesoscopic Feature Revealed By Electron Microscopy Could Facilitate Ion Transport In Solid Electrolytes. Microscopy and Microanalysis, 2016, 22, 1308-1309.	0.2	0
44	Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. Advanced Energy Materials, 2016, 6, 1600053.	10.2	46
45	Elastic Properties of the Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO). Chemistry of Materials, 2016, 28, 197-206.	3.2	445
46	In situ Electrochemical TEM for Quantitative Nanoscale Imaging Dynamics of Solid Electrolyte Interphase and Lithium Electrodeposition. Microscopy and Microanalysis, 2015, 21, 2437-2438.	0.2	2
47	Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 9816-9823.	1.5	28
48	Using all energy in a battery. Science, 2015, 347, 131-132.	6.0	99
49	Lithiumâ€ion Batteries: Solid Electrolyte: the Key for Highâ€Voltage Lithium Batteries (Adv. Energy Mater.) Tj ET	Qq110.78	34314 rgBT /(82
50	Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters. Nano Letters, 2015, 15, 2011-2018.	4.5	185
51	Operando NMR and XRD study of chemically synthesized LiC oxidation in a dry room environment. Journal of Power Sources, 2015, 287, 253-260.	4.0	22
52	Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 13732-13735.	6.6	61
53	Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chemical Communications, 2015, 51, 16377-16380.	2.2	25
54	Asymmetric Rate Behavior of Si Anodes for Lithiumâ€ion Batteries: Ultrafast Deâ€Lithiation versus Sluggish Lithiation at High Current Densities. Advanced Energy Materials, 2015, 5, 1401627.	10.2	50

NANCY J DUDNEY

#	Article	IF	CITATIONS
55	Solid Electrolyte: the Key for Highâ€Voltage Lithium Batteries. Advanced Energy Materials, 2015, 5, 1401408.	10.2	544
56	Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with <i>In Situ</i> Electrochemical Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1029-1037.	0.2	83
57	Quantitative Electrochemical Measurements Using <i>In Situ</i> ec-S/TEM Devices. Microscopy and Microanalysis, 2014, 20, 452-461.	0.2	80
58	Dry Synthesis of Lithium Intercalated Graphite Powder and Fiber. Journal of the Electrochemical Society, 2014, 161, A614-A619.	1.3	15
59	Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic binders: Experiments and first-principles modeling. Journal of Power Sources, 2014, 251, 8-13.	4.0	30
60	Resolving the Grain Boundary and Lattice Impedance of Hotâ€Pressed Li ₇ La ₃ Zr ₂ O ₁₂ Garnet Electrolytes. ChemElectroChem, 2014, 1, 375-378.	1.7	112
61	Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chemical Communications, 2014, 50, 2104.	2.2	172
62	Effect of interface modifications on voltage fade in 0.5Li2MnO3·0.5LiNi0.375Mn0.375Co0.25O2 cathode materials. Journal of Power Sources, 2014, 249, 509-514.	4.0	89
63	Air-stable, high-conduction solid electrolytes of arsenic-substituted Li ₄ SnS ₄ . Energy and Environmental Science, 2014, 7, 1053-1058.	15.6	326
64	Mixed Polyanion Glass Cathodes: Iron Phosphate Vanadate Glasses. Journal of the Electrochemical Society, 2014, 161, A2210-A2215.	1.3	17
65	Electrode architectures for high capacity multivalent conversion compounds: iron (ii and iii) fluoride. RSC Advances, 2014, 4, 6730.	1.7	39
66	Interface Limited Lithium Transport in Solid-State Batteries. Journal of Physical Chemistry Letters, 2014, 5, 298-303.	2.1	148
67	A high conductivity oxide–sulfide composite lithium superionic conductor. Journal of Materials Chemistry A, 2014, 2, 4111-4116.	5.2	77
68	The possibility of forming a sacrificial anode coating for Mg. Corrosion Science, 2014, 87, 11-14.	3.0	35
69	Pushing the Theoretical Limit of Li-CF _{<i>x</i>} Batteries: A Tale of Bifunctional Electrolyte. Journal of the American Chemical Society, 2014, 136, 6874-6877.	6.6	70
70	Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes. ACS Applied Materials & amp; Interfaces, 2014, 6, 10083-10088.	4.0	141
71	A high-conduction Ge substituted Li ₃ AsS ₄ solid electrolyte with exceptional low activation energy. Journal of Materials Chemistry A, 2014, 2, 10396-10403.	5.2	67
72	Degradation mechanisms of lithium-rich nickel manganese cobalt oxide cathode thin films. RSC Advances, 2014, 4, 23364.	1.7	45

#	Article	IF	CITATIONS
73	Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigation. Microscopy and Microanalysis, 2014, 20, 1506-1507.	0.2	1
74	In operando Transmission Electron Microscopy Imaging of SEI Formation and Structure in Li-Ion and Li-Metal Batteries. Microscopy and Microanalysis, 2014, 20, 1538-1539.	0.2	1
75	Phosphorous Pentasulfide as a Novel Additive for Highâ€Performance Lithiumâ€6ulfur Batteries. Advanced Functional Materials, 2013, 23, 1064-1069.	7.8	397
76	An Artificial Solid Electrolyte Interphase Enables the Use of a LiNi _{0.5} Mn _{1.5} O ₄ 5 V Cathode with Conventional Electrolytes. Advanced Energy Materials, 2013, 3, 1275-1278.	10.2	75
77	Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications. Journal of Power Sources, 2013, 241, 178-185.	4.0	37
78	Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage. Journal of Physical Chemistry Letters, 2013, 4, 3798-3805.	2.1	28
79	Influence of Hydrocarbon and CO ₂ on the Reversibility of Li–O ₂ Chemistry Using <i>In Situ</i> Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 25948-25954.	1.5	59
80	Cathode Materials: Phosphorous Pentasulfide as a Novel Additive for Highâ€Performance Lithiumâ€Sulfur Batteries (Adv. Funct. Mater. 8/2013). Advanced Functional Materials, 2013, 23, 918-918.	7.8	3
81	In situ atomic force microscopy studies on lithium (de)intercalation-induced morphology changes in Li CoO2 micro-machined thin film electrodes. Journal of Power Sources, 2013, 222, 417-425.	4.0	40
82	Anomalous High Ionic Conductivity of Nanoporous β-Li ₃ PS ₄ . Journal of the American Chemical Society, 2013, 135, 975-978.	6.6	709
83	Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS. Electrochimica Acta, 2013, 90, 135-147.	2.6	140
84	Gas evolution from cathode materials: A pathway to solvent decomposition concomitant to SEI formation. Journal of Power Sources, 2013, 239, 341-346.	4.0	34
85	Lithium Superionic Sulfide Cathode for All-Solid Lithium–Sulfur Batteries. ACS Nano, 2013, 7, 2829-2833.	7.3	333
86	Electrochemical and Solid-State Lithiation of Graphitic C ₃ N ₄ . Chemistry of Materials, 2013, 25, 503-508.	3.2	141
87	Lithium Polysulfidophosphates: A Family of Lithiumâ€Conducting Sulfurâ€Rich Compounds for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2013, 52, 7460-7463.	7.2	263
88	Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Materials Chemistry A, 2013, 1, 5587.	5.2	137
89	A Perspective on Coatings to Stabilize High-Voltage Cathodes: LiMn _{1.5} Ni _{0.5} O ₄ with Sub-Nanometer Lipon Cycled with LiPF ₆ Electrolyte. Journal of the Electrochemical Society, 2013, 160, A3113-A3125.	1.3	51
90	Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles. Chemistry of Materials, 2013, 25, 4936-4945.	3.2	33

#	Article	IF	CITATIONS
91	Intrinsic Surface Stability in LiMn2–xNixO4–δ (x = 0.45, 0.5) High Voltage Spinel Materials for Lithium Ion Batteries. Electrochemical and Solid-State Letters, 2012, 15, A72.	2.2	30
92	Electrochemical Stability of Carbon Fibers Compared to Aluminum as Current Collectors for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A1652-A1658.	1.3	48
93	Local Detection of Activation Energy for Ionic Transport in Lithium Cobalt Oxide. Nano Letters, 2012, 12, 3399-3403.	4.5	58
94	Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Power Sources, 2012, 216, 179-186.	4.0	131
95	In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions. Scientific Reports, 2012, 2, 715.	1.6	180
96	Anomalous Discharge Product Distribution in Lithium-Air Cathodes. Journal of Physical Chemistry C, 2012, 116, 8401-8408.	1.5	79
97	Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation. ACS Catalysis, 2012, 2, 1138-1146.	5.5	127
98	Influence of Lithium Salts on the Discharge Chemistry of Li–Air Cells. Journal of Physical Chemistry Letters, 2012, 3, 1242-1247.	2.1	123
99	Self-aligned Cu–Si core–shell nanowire array as a high-performance anode for Li-ion batteries. Journal of Power Sources, 2012, 198, 312-317.	4.0	65
100	Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Power Sources, 2012, 199, 220-226.	4.0	210
101	Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. Journal of Power Sources, 2012, 201, 280-287.	4.0	64
102	Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries. Journal of Power Sources, 2012, 211, 108-118.	4.0	71
103	Vacuum-tight sample transfer stage for a scanning electron microscopic study of stabilized lithium metal particles. Journal of Materials Science, 2012, 47, 1572-1577.	1.7	19
104	Evolution of Phase Transformation Behavior in Li(Mn1.5Ni0.5)O4 Cathodes Studied By In Situ XRD. Journal of the Electrochemical Society, 2011, 158, A890.	1.3	45
105	Direct Mapping of Ionic Transport in a Si Anode on the Nanoscale: Time Domain Electrochemical Strain Spectroscopy Study. ACS Nano, 2011, 5, 9682-9695.	7.3	61
106	Current Collectors for Rechargeable Li-Air Batteries. Journal of the Electrochemical Society, 2011, 158, A658-A663.	1.3	56
107	Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes. Journal of Physical Chemistry C, 2011, 115, 14325-14333.	1.5	114
108	Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector. Journal of the Electrochemical Society, 2011, 158, A1060.	1.3	59

#	Article	IF	CITATIONS
109	Effective conductivity of particulate polymer composite electrolytes using random resistor network method. Solid State Ionics, 2011, 199-200, 44-53.	1.3	10
110	Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films, 2011, 520, 413-418.	0.8	122
111	High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochimica Acta, 2011, 56, 6573-6580.	2.6	91
112	Influence of Support Hydroxides on the Catalytic Activity of Oxidized Gold Clusters. ChemCatChem, 2010, 2, 281-286.	1.8	32
113	Ultrahighâ€Energyâ€Density Microbatteries Enabled by New Electrode Architecture and Micropackaging Design. Advanced Materials, 2010, 22, E139-44.	11.1	156
114	Properties of lithium phosphorus oxynitride (Lipon) for 3D solid-state lithium batteries. Journal of Materials Research, 2010, 25, 1507-1515.	1.2	39
115	Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution. Nano Letters, 2010, 10, 3420-3425.	4.5	232
116	Decoupling Electrochemical Reaction and Diffusion Processes in Ionically-Conductive Solids on the Nanometer Scale. ACS Nano, 2010, 4, 7349-7357.	7.3	96
117	Understanding the Degradation of Silicon Electrodes for Lithium-Ion Batteries Using Acoustic Emission. Journal of the Electrochemical Society, 2010, 157, A1354.	1.3	122
118	Thermal stability and catalytic activity of gold nanoparticles supported on silica. Journal of Catalysis, 2009, 262, 92-101.	3.1	170
119	Understanding Catalyst Stability through Aberration-Corrected STEM. Microscopy and Microanalysis, 2009, 15, 1408-1409.	0.2	3
120	Role of pH in the Formation of Structurally Stable and Catalytically Active TiO ₂ -Supported Gold Catalysts. Journal of Physical Chemistry C, 2009, 113, 269-280.	1.5	67
121	Thin Film Batteries for Energy Harvesting. , 2009, , 355-363.		5
122	Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chemistry of Materials, 2009, 21, 4724-4730.	3.2	815
123	Magnetron Sputtering to Prepare Supported Metal Catalysts. , 2008, , 347-353.		2
124	Thin Film Micro-Batteries. Electrochemical Society Interface, 2008, 17, 44-48.	0.3	134
125	Characterization and Performance of LiFePO[sub 4] Thin-Film Cathodes Prepared with Radio-Frequency Magnetron-Sputter Deposition. Journal of the Electrochemical Society, 2007, 154, A805.	1.3	59
126	Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. Catalysis Today, 2007, 122, 248-253.	2.2	68

NANCY J DUDNEY

#	Article	IF	CITATIONS
127	The use of Magnetron Sputtering for the Production of Heterogeneous Catalysts. Studies in Surface Science and Catalysis, 2006, , 71-78.	1.5	10
128	Mesoporous Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitor. Materials Research Society Symposia Proceedings, 2006, 973, 1.	0.1	2
129	Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries. Journal of Power Sources, 2006, 161, 1392-1399.	4.0	56
130	Graphite Foams for Lithium-Ion Battery Current Collectors. ECS Transactions, 2006, 3, 23-28.	0.3	9
131	Nanoparticles of gold on -AlO produced by dc magnetron sputtering. Journal of Catalysis, 2005, 231, 151-158.	3.1	95
132	Preparation of thin-film neutron converter foils for imaging detectors. IEEE Transactions on Nuclear Science, 2004, 51, 1034-1038.	1.2	3
133	Preparation of Bi Nanowires from the Reaction between Ammonia and Bi1.7V8O16. Chemistry of Materials, 2004, 16, 3348-3351.	3.2	8
134	A detector for neutron imaging. IEEE Transactions on Nuclear Science, 2004, 51, 1016-1019.	1.2	16
135	Electrochemical and electron microscopic characterization of thin-film LiCoO2 cathodes under high-voltage cycling conditions. Journal of Power Sources, 2003, 119-121, 295-299.	4.0	30
136	Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 μm thick LiCoO2. Journal of Power Sources, 2003, 119-121, 300-304.	4.0	97
137	Electrochemically-driven solid-state amorphization in lithium–metal anodes. Journal of Power Sources, 2003, 119-121, 604-609.	4.0	177
138	Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia, 2003, 51, 1103-1113.	3.8	440
139	High-Voltage Cycling Behavior of Thin-Film LiCoO[sub 2] Cathodes. Journal of the Electrochemical Society, 2002, 149, A1442.	1.3	59
140	Lithium Diffusion in Li[sub x]CoO[sub 2]â€,(0.45 < x < 0.7) Intercalation Cathodes. Electrocher Solid-State Letters, 2001, 4, A74.	nical and	159
141	Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. Journal of Power Sources, 2000, 89, 176-179.	4.0	142
142	Thin-film lithium and lithium-ion batteries. Solid State Ionics, 2000, 135, 33-45.	1.3	987
143	Thin Film Rechargeable Lithium Batteries for Implantable Devices. ASAIO Journal, 1997, 43, M647.	0.9	7
144	Deposition and Characterization of Li2O-SiO2-P2O5 Thin Films. Journal of the American Ceramic Society, 1993, 76, 929-943.	1.9	21

#	Article	IF	CITATIONS
145	Enhanced Ionic Conduction in AgCI-Al2O3 Composites Induced by Plastic Deformation. Journal of the American Ceramic Society, 1987, 70, 65-68.	1.9	40
146	Hydration of Sodium beta- and beta''-Aluminas. Journal of the American Ceramic Society, 1987, 70, 816-821.	1.9	6
147	Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy Letters, 0, , 1399-1404.	8.8	228