Kwan Ho Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1306978/publications.pdf

Version: 2024-02-01

21 papers

3,144 citations

394421 19 h-index 752698 20 g-index

23 all docs

23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

5420 citing authors

#	Article	IF	CITATIONS
1	CD24+ Liver Tumor-Initiating Cells Drive Self-Renewal and Tumor Initiation through STAT3-Mediated NANOG Regulation. Cell Stem Cell, 2011, 9, 50-63.	11.1	545
2	Aldehyde Dehydrogenase Discriminates the CD133 Liver Cancer Stem Cell Populations. Molecular Cancer Research, 2008, 6, 1146-1153.	3.4	427
3	miR-130b Promotes CD133+ Liver Tumor-Initiating Cell Growth and Self-Renewal via Tumor Protein 53-Induced Nuclear Protein 1. Cell Stem Cell, 2010, 7, 694-707.	11.1	368
4	PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nature Immunology, 2020, 21, 442-454.	14.5	228
5	SHP2 Inhibition Prevents Adaptive Resistance to MEK Inhibitors in Multiple Cancer Models. Cancer Discovery, 2018, 8, 1237-1249.	9.4	216
6	CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology, 2012, 55, 807-820.	7.3	206
7	Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology, 2014, 60, 179-191.	7.3	167
8	SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. Journal of Experimental Medicine, 2021, 218, .	8.5	138
9	A CD90+ Tumor-Initiating Cell Population with an Aggressive Signature and Metastatic Capacity in Esophageal Cancer. Cancer Research, 2013, 73, 2322-2332.	0.9	135
10	CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. Journal of Clinical Investigation, 2010, 120, 1178-1191.	8.2	132
11	Rab25 Is a Tumor Suppressor Gene with Antiangiogenic and Anti-Invasive Activities in Esophageal Squamous Cell Carcinoma. Cancer Research, 2012, 72, 6024-6035.	0.9	110
12	Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology, 2011, 53, 160-170.	7.3	91
13	MicroRNA-616 Induces Androgen-Independent Growth of Prostate Cancer Cells by Suppressing Expression of Tissue Factor Pathway Inhibitor TFPI-2. Cancer Research, 2011, 71, 583-592.	0.9	80
14	Overriding Adaptive Resistance to Sorafenib Through Combination Therapy With Src Homology 2 Domain–Containing Phosphatase 2 Blockade in Hepatocellular Carcinoma. Hepatology, 2020, 72, 155-168.	7.3	58
15	Combined Inhibition of SHP2 and CXCR1/2 Promotes Antitumor T-cell Response in NSCLC. Cancer Discovery, 2022, 12, 47-61.	9.4	58
16	Distinct fibroblast functional states drive clinical outcomes in ovarian cancer and are regulated by TCF21. Journal of Experimental Medicine, 2020, 217, .	8.5	51
17	Ontogeny and Vulnerabilities of Drug-Tolerant Persisters in HER2+ Breast Cancer. Cancer Discovery, 2022, 12, 1022-1045.	9.4	43
18	N-Glycoproteomics of Patient-Derived Xenografts: A Strategy to Discover Tumor-Associated Proteins in High-Grade Serous Ovarian Cancer. Cell Systems, 2019, 8, 345-351.e4.	6.2	31

#	Article	IF	CITATIONS
19	Targeting <i>HER2</i> Exon 20 Insertion–Mutant Lung Adenocarcinoma with a Novel Tyrosine Kinase Inhibitor Mobocertinib. Cancer Research, 2021, 81, 5311-5324.	0.9	31
20	Prostate cancer cells modulate osteoblast mineralisation and osteoclast differentiation through Id-1. British Journal of Cancer, 2010, 102, 332-341.	6.4	20
21	Liver Tumor-Initiating Cells/Cancer Stem Cells: Past Studies, Current Status, and Future Perspectives. , 2012, , 181-196.		0