## Mads Jochumsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1306933/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Detection of Attempted Stroke Hand Motions from Surface EMG. Biosystems and Biorobotics, 2022, ,<br>47-52.                                                                                                                | 0.3 | 0         |
| 2  | Subject-Independent Detection of Movement-Related Cortical Potentials and Classifier Adaptation from Single-Channel EEG. Biosystems and Biorobotics, 2022, , 77-81.                                                       | 0.3 | 0         |
| 3  | Feature and Classification Analysis for Detection and Classification of Tongue Movements From<br>Single-Trial Pre-Movement EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering,<br>2022, 30, 678-687. | 4.9 | 9         |
| 4  | Single-Trial Classification of Error-Related Potentials in People with Motor Disabilities: A Study in<br>Cerebral Palsy, Stroke, and Amputees. Sensors, 2022, 22, 1676.                                                   | 3.8 | 2         |
| 5  | Associative cued asynchronous <scp>BCI</scp> induces cortical plasticity in stroke patients. Annals of Clinical and Translational Neurology, 2022, 9, 722-733.                                                            | 3.7 | 6         |
| 6  | Scalable tensor factorization for recovering multiday missing intramuscular electromyography data.<br>Journal of Intelligent and Fuzzy Systems, 2022, 43, 1177-1187.                                                      | 1.4 | 2         |
| 7  | Manual 3D Control of an Assistive Robotic Manipulator Using Alpha Rhythms and an Auditory Menu: A<br>Proof-of-Concept. Signals, 2022, 3, 396-409.                                                                         | 1.9 | 1         |
| 8  | Modulating Frustration and Agency Using Fabricated Input for Motor Imagery BCIs in Stroke<br>Rehabilitation. IEEE Access, 2022, 10, 72312-72327.                                                                          | 4.2 | 3         |
| 9  | Decoding kinetic features of hand motor preparation from singleâ€ŧrial EEG using convolutional neural networks. European Journal of Neuroscience, 2021, 53, 556-570.                                                      | 2.6 | 5         |
| 10 | Induction of Neural Plasticity Using a Low-Cost Open Source Brain-Computer Interface and a 3D-Printed Wrist Exoskeleton. Sensors, 2021, 21, 572.                                                                          | 3.8 | 12        |
| 11 | Investigating the Intervention Parameters of Endogenous Paired Associative Stimulation (ePAS). Brain Sciences, 2021, 11, 224.                                                                                             | 2.3 | 3         |
| 12 | Decoding of Ankle Joint Movements in Stroke Patients Using Surface Electromyography. Sensors, 2021, 21, 1575.                                                                                                             | 3.8 | 3         |
| 13 | Evaluation of windowing techniques for intramuscular EMG-based diagnostic, rehabilitative and assistive devices. Journal of Neural Engineering, 2021, 18, 016017.                                                         | 3.5 | 10        |
| 14 | The Danish Future Patient Telerehabilitation Program for Patients With Atrial Fibrillation: Design and Pilot Study in Collaboration With Patients and Their Spouses. JMIR Cardio, 2021, 5, e27321.                        | 1.7 | 3         |
| 15 | Detection of Error-Related Potentials in Stroke Patients from EEG Using an Artificial Neural Network.<br>Sensors, 2021, 21, 6274.                                                                                         | 3.8 | 7         |
| 16 | Electroencephalographic Recording of the Movement-Related Cortical Potential in Ecologically Valid<br>Movements: A Scoping Review. Frontiers in Neuroscience, 2021, 15, 721387.                                           | 2.8 | 10        |
| 17 | "Mine Works Better†Examining the Influence of Embodiment in Virtual Reality on the Sense of Agency<br>During a Binary Motor Imagery Task With a Brain-Computer Interface. Frontiers in Psychology, 2021, 12,<br>806424.   | 2.1 | 9         |
| 18 | Upper limb complex movements decoding from pre-movement EEG signals using wavelet common spatial patterns. Computer Methods and Programs in Biomedicine, 2020, 183, 105076.                                               | 4.7 | 35        |

Mads Jochumsen

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Decoding Attempted Hand Movements in Stroke Patients Using Surface Electromyography. Sensors, 2020, 20, 6763.                                                                                                                        | 3.8 | 14        |
| 20 | Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: a feature and classifier investigation. Medical and Biological Engineering and Computing, 2020, 58, 2699-2710. | 2.8 | 13        |
| 21 | EEG Headset Evaluation for Detection of Single-Trial Movement Intention for Brain-Computer<br>Interfaces. Sensors, 2020, 20, 2804.                                                                                                   | 3.8 | 15        |
| 22 | Peripheral Electrical Stimulation Paired With Movement-Related Cortical Potentials Improves<br>Isometric Muscle Strength and Voluntary Activation Following Stroke. Frontiers in Human<br>Neuroscience, 2020, 14, 156.               | 2.0 | 15        |
| 23 | A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN. Sensors, 2020, 20, 3385.                                                                                                                                    | 3.8 | 12        |
| 24 | Detection and classification of single-trial movement-related cortical potentials associated with functional lower limb movements. Journal of Neural Engineering, 2020, 17, 035009.                                                  | 3.5 | 10        |
| 25 | Evaluation of EEG Headset Mounting for Brain-Computer Interface-Based Stroke Rehabilitation by Patients, Therapists, and Relatives. Frontiers in Human Neuroscience, 2020, 14, 13.                                                   | 2.0 | 20        |
| 26 | Detection and classification of tongue movements from single-trial EEG. , 2020, , .                                                                                                                                                  |     | 8         |
| 27 | Investigating the feasibility of combining EEG and EMG for controlling a hybrid human computer interface in patients with spinal cord injury. , 2020, , .                                                                            |     | 4         |
| 28 | EMG- Versus EEG-Triggered Electrical Stimulation for Inducing Corticospinal Plasticity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1901-1908.                                                     | 4.9 | 22        |
| 29 | Automated Labeling of Movement- Related Cortical Potentials Using Segmented Regression. IEEE<br>Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1282-1291.                                                  | 4.9 | 10        |
| 30 | A Tensor-Based Method for Completion of Missing Electromyography Data. IEEE Access, 2019, 7, 104710-104720.                                                                                                                          | 4.2 | 15        |
| 31 | Self-Paced Online vs. Cue-Based Offline Brain–Computer Interfaces for Inducing Neural Plasticity.<br>Brain Sciences, 2019, 9, 127.                                                                                                   | 2.3 | 17        |
| 32 | Continuous 2D control via state-machine triggered by endogenous sensory discrimination and a fast<br>brain switch. Journal of Neural Engineering, 2019, 16, 056001.                                                                  | 3.5 | 13        |
| 33 | Therapeutic effects of aerobic exercise on EEG parameters and higher cognitive functions in mild cognitive impairment patients. International Journal of Neuroscience, 2019, 129, 551-562.                                           | 1.6 | 37        |
| 34 | Xbox 360 Kinect Cognitive Games Improve Slowness, Complexity of EEG, and Cognitive Functions in<br>Subjects with Mild Cognitive Impairment: A Randomized Control Trial. Games for Health Journal, 2019,<br>8, 144-152.               | 2.0 | 51        |
| 35 | Modeling and Control of Rehabilitation Robotic Device: motoBOTTE. Biosystems and Biorobotics, 2019, , 546-550.                                                                                                                       | 0.3 | 0         |
| 36 | The effect of arm position on classification of hand gestures with intramuscular EMG. Biomedical Signal Processing and Control, 2018, 43, 1-8.                                                                                       | 5.7 | 44        |

MADS JOCHUMSEN

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Paired Associative Stimulation Delivered by Pairing Movement-Related Cortical Potentials With<br>Peripheral Electrical Stimulation: An Investigation of the Duration of Neuromodulatory Effects.<br>Neuromodulation, 2018, 21, 362-367. | 0.8 | 20        |
| 38 | Effect of subject training on a movement-related cortical potential-based brain-computer interface.<br>Biomedical Signal Processing and Control, 2018, 41, 63-68.                                                                       | 5.7 | 11        |
| 39 | Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced<br>Brain-Computer Interface. Sensors, 2018, 18, 3761.                                                                              | 3.8 | 16        |
| 40 | Performance of Combined Surface and Intramuscular EMG for Classification of Hand Movements. , 2018, 2018, 5220-5223.                                                                                                                    |     | 3         |
| 41 | Movement intention detection in adolescents with cerebral palsy from single-trial EEG. Journal of Neural Engineering, 2018, 15, 066030.                                                                                                 | 3.5 | 16        |
| 42 | Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques. Sensors, 2018, 18, 2497.                                                                                                                               | 3.8 | 146       |
| 43 | Chiropractic spinal manipulation alters TMS induced I-wave excitability and shortens the cortical silent period. Journal of Electromyography and Kinesiology, 2018, 42, 24-35.                                                          | 1.7 | 16        |
| 44 | Impact of Spinal Manipulation on Cortical Drive to Upper and Lower Limb Muscles. Brain Sciences, 2017, 7, 2.                                                                                                                            | 2.3 | 37        |
| 45 | Quantification of Movement-Related EEG Correlates Associated with Motor Training: A Study on<br>Movement-Related Cortical Potentials and Sensorimotor Rhythms. Frontiers in Human Neuroscience,<br>2017, 11, 604.                       | 2.0 | 29        |
| 46 | Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms. Computational Intelligence and Neuroscience, 2017, 2017, 1-8.                                                               | 1.7 | 12        |
| 47 | Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study. Neural Plasticity, 2016, 2016, 1-9.                                                           | 2.2 | 47        |
| 48 | Pairing Voluntary Movement and Muscle-Located Electrical Stimulation Increases Cortical Excitability. Frontiers in Human Neuroscience, 2016, 10, 482.                                                                                   | 2.0 | 26        |
| 49 | Universal Matched-Filter Template Versus Individualized Template for Single Trial Detection of<br>Movement Intentions of Different Tasks. Smart Innovation, Systems and Technologies, 2016, , 275-282.                                  | 0.6 | 0         |
| 50 | Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation. Medical and Biological Engineering and Computing, 2016, 54, 1491-1501.                                 | 2.8 | 60        |
| 51 | Induction of Long-term Depression-like Plasticity by Pairings of Motor Imagination and Peripheral<br>Electrical Stimulation. Frontiers in Human Neuroscience, 2015, 9, 644.                                                             | 2.0 | 9         |
| 52 | A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-13.                                                            | 1.3 | 91        |
| 53 | Comparison of Features for Movement Prediction from Single-Trial Movement-Related Cortical<br>Potentials in Healthy Subjects and Stroke Patients. Computational Intelligence and Neuroscience, 2015,<br>2015, 1-8.                      | 1.7 | 22        |
| 54 | Online multi-class brain-computer interface for detection and classification of lower limb movement intentions and kinetics for stroke rehabilitation. Brain-Computer Interfaces, 2015, 2, 202-210.                                     | 1.8 | 20        |

Mads Jochumsen

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. Journal of Neural Engineering, 2015, 12, 056003.                  | 3.5 | 47        |
| 56 | Detecting and classifying movement-related cortical potentials associated with hand movements in<br>healthy subjects and stroke patients from single-electrode, single-trial EEG. Journal of Neural<br>Engineering, 2015, 12, 056013. | 3.5 | 70        |
| 57 | An empirical study to remove noise from single-trial MRCP for movement intention detection. , 2015, , .                                                                                                                               |     | 1         |
| 58 | Improved Detection and Force Decoding through Combined Near-Infrared Spectroscopy and Electroencephalographic Measurements. Biosystems and Biorobotics, 2014, , 411-419.                                                              | 0.3 | 1         |
| 59 | Detection of Movement Intentions through a Single Channel of Electroencephalography. Biosystems and Biorobotics, 2014, , 465-472.                                                                                                     | 0.3 | 6         |
| 60 | Chiropractic, Cortical Excitability and BCI. Biosystems and Biorobotics, 2014, , 121-125.                                                                                                                                             | 0.3 | 1         |
| 61 | Use of Empirical Mode Decomposition for Classification of MRCP Based Task Parameters. Lecture Notes in Computer Science, 2014, , 77-84.                                                                                               | 1.3 | Ο         |
| 62 | Detection of movement-related cortical potentials based on subject-independent training. Medical and Biological Engineering and Computing, 2013, 51, 507-512.                                                                         | 2.8 | 75        |
| 63 | Detection and classification of movement-related cortical potentials associated with task force and speed. Journal of Neural Engineering, 2013, 10, 056015.                                                                           | 3.5 | 98        |