Li-Yuan Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1306738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Composites Part B: Engineering, 2011, 42, 1468-1473.	12.0	228
2	Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Materials and Design, 2017, 121, 430-441.	7.0	147
3	Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. International Journal of Fatigue, 2019, 120, 46-55.	5.7	110
4	Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method. Composites Part B: Engineering, 2019, 173, 106911.	12.0	89
5	Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys. Journal of Materials Science and Technology, 2021, 60, 44-55.	10.7	85
6	The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure. Materials & Design, 2012, 39, 55-62.	5.1	83
7	Microstructure and mechanical properties of NiAl–Cr(Mo)/Nb eutectic alloy prepared by injection-casting. Materials & Design, 2009, 30, 964-969.	5.1	75
8	Microstructure and mechanical properties of Ni3Al fabricated by thermal explosion and hot extrusion. Intermetallics, 2009, 17, 572-577.	3.9	75
9	Investigation on microstructure and wear behavior of the NiAl–TiC–Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. Journal of Alloys and Compounds, 2013, 554, 182-188.	5.5	73
10	CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization. Optics and Laser Technology, 2018, 103, 170-176.	4.6	70
11	Investigation on NiAl–TiC–Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion. Composites Part B: Engineering, 2013, 45, 785-791.	12.0	69
12	Microstructures and mechanical properties of cast Nb–Ti–Si–Zr alloys. Intermetallics, 2008, 16, 807-812.	3.9	67
13	Single-crystalline ultrathin 2D TiO2 nanosheets: A bridge towards superior photovoltaic devices. Materials Today Energy, 2017, 3, 32-39.	4.7	67
14	Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 555, 131-138.	5.6	65
15	New sensor for gases dissolved in transformer oil based on solid oxide fuel cell. Sensors and Actuators B: Chemical, 2014, 202, 232-239.	7.8	63
16	Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy. Journal of Materials Science and Technology, 2018, 34, 1805-1816.	10.7	63
17	Microstructure and mechanical properties of rapidly solidified NiAl–Cr(Mo) eutectic alloy doped with trace Dy. Journal of Alloys and Compounds, 2009, 475, 730-734.	5.5	62
18	Carbon fiber reinforced thermoplastic composites and TC4 alloy laser assisted joining with the metal surface laser plastic-covered method. Composites Part B: Engineering, 2021, 213, 108738.	12.0	60

#	Article	IF	CITATIONS
19	Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo,Hf) eutectic alloys. Materials & Design, 2011, 32, 4810-4817.	5.1	58
20	Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy. Journal of Magnesium and Alloys, 2020, 8, 601-613.	11.9	58
21	Influence of grain boundary carbides on mechanical properties of high nitrogen austenitic stainless steel. Materials & Design, 2012, 37, 349-355.	5.1	54
22	Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg-8†wt.%Li alloy. Journal of Magnesium and Alloys, 2021, 9, 560-568.	11.9	53
23	Microstructure evolution and mechanical properties' improvement of NiAl–Cr(Mo)–Hf eutectic alloy during suction casting and subsequent HIP treatment. Intermetallics, 2009, 17, 1115-1119.	3.9	52
24	Microstructure and mechanical properties of Ni3Al and Ni3Al–1B alloys fabricated by SHS/HE. Intermetallics, 2011, 19, 137-142.	3.9	52
25	Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment. Intermetallics, 2012, 27, 14-20.	3.9	52
26	Nanocomposite films based on TEMPO-mediated oxidized bacterial cellulose and chitosan. Cellulose, 2014, 21, 2757-2772.	4.9	51
27	Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. Journal of Materials Science and Technology, 2019, 35, 6-18.	10.7	51
28	Aligned Graphene Mesh-Supported Double Network Natural Hydrogel Conduit Loaded with Netrin-1 for Peripheral Nerve Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 112-122.	8.0	51
29	Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8324-8331.	5.6	50
30	Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 673-681.	4.2	49
31	Microstructure evolution and elevated temperature compressive properties of a rapidly solidified NiAl–Cr(Nb)/Dy alloy. Materials & Design, 2009, 30, 2752-2755.	5.1	48
32	Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound. Intermetallics, 2010, 18, 740-744.	3.9	48
33	Surface characterization of TEMPOâ€oxidized bacterial cellulose. Surface and Interface Analysis, 2013, 45, 1673-1679.	1.8	48
34	Microstructure and mechanical properties of Hf and Ho doped NiAl–Cr(Mo) near eutectic alloy prepared by suction casting. Materials Characterization, 2009, 60, 1311-1316.	4.4	47
35	Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy in 3.5 wt.% NaCl solution. Corrosion Science, 2018, 142, 185-200.	6.6	46
36	Deformation and fracture mechanisms of an annealing-tailored "bimodal―grain-structured Mg alloy. Journal of Materials Science and Technology, 2019, 35, 2423-2429.	10.7	46

#	Article	IF	CITATIONS
37	Effect of extrusion process on the mechanical and in vitro degradation performance of a biomedical Mg-Zn-Y-Nd alloy. Bioactive Materials, 2020, 5, 219-227.	15.6	44
38	Anisotropic corrosion behavior of hot-rolled Mg-8 wt.%Li alloy. Journal of Materials Science and Technology, 2020, 53, 102-111.	10.7	44
39	TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system. Colloid and Polymer Science, 2013, 291, 2985-2992.	2.1	42
40	Optimization of microstructure and mechanical property of a Mg-Zn-Y-Nd alloy by extrusion process. Journal of Alloys and Compounds, 2019, 775, 990-1001.	5.5	40
41	Primary MC decomposition and its effects on the rupture behaviors in hot-corrosion resistant Ni-based superalloy K444. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 553, 14-21.	5.6	39
42	Microstructure and room temperature mechanical properties of NiAl–Cr(Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting. Transactions of Nonferrous Metals Society of China, 2013, 23, 983-990.	4.2	37
43	Natural ageing responses of duplex structured Mg-Li based alloys. Scientific Reports, 2017, 7, 40078.	3.3	37
44	Effect of Ho on the microstructure and compressive properties of NiAl-based eutectic alloy. Materials Letters, 2008, 62, 3910-3912.	2.6	36
45	Suppressing Effect of Heat Treatment on the Portevin–Le Chatelier Phenomenon of Mg–4%Li–6%Zn–1.2%Y Alloy. Journal of Materials Science and Technology, 2016, 32, 1232-1238.	10.7	36
46	Effects of hot-working parameters on microstructural evolution of high nitrogen austenitic stainless steel. Materials & Design, 2011, 32, 3711-3717.	5.1	35
47	Precipitation and evolution of grain boundary boride in a nickel-based superalloy during thermal exposure. Materials Characterization, 2017, 128, 109-114.	4.4	35
48	Effect of Icosahedral Phase on Crystallographic Texture and Mechanical Anisotropy of Mg–4%Li Based Alloys. Journal of Materials Science and Technology, 2017, 33, 475-480.	10.7	34
49	M5B3 Boride at the Grain Boundary of a Nickel-based Superalloy. Journal of Materials Science and Technology, 2016, 32, 265-270.	10.7	33
50	Improving surface quality and superficial microstructure of LDED Inconel 718 superalloy processed by hybrid laser polishing. Journal of Materials Processing Technology, 2022, 300, 117428.	6.3	33
51	High corrosion resistance and weak corrosion anisotropy of an as-rolled Mg-3Al-1Zn (in wt.%) alloy with strong crystallographic texture. Scientific Reports, 2017, 7, 16014.	3.3	32
52	Magnesium-pretreated periosteum for promoting bone-tendon healing after anterior cruciate ligament reconstruction. Biomaterials, 2021, 268, 120576.	11.4	32
53	Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Materials Science and Engineering C, 2021, 131, 112499.	7.3	32
54	Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy. Scientific Reports, 2016, 6, 29471.	3.3	31

#	Article	IF	CITATIONS
55	Microstructure and elevated temperature tensile behaviour of directionally solidified nickel based superalloy. Materials Research Innovations, 2013, 17, 101-106.	2.3	30
56	Development of a novel quasi-3D model to investigate the performance of a falling film dehumidifier with CFD technology. International Journal of Heat and Mass Transfer, 2019, 132, 431-442.	4.8	29
57	ZrO2 strengthened NiAl/Cr(Mo,Hf) composite fabricated by powder metallurgy. Progress in Natural Science: Materials International, 2012, 22, 231-236.	4.4	28
58	Effects of icosahedral phase on mechanical anisotropy of as-extruded Mg-14Li (in wt%) based alloys. Journal of Materials Science and Technology, 2019, 35, 2477-2484.	10.7	28
59	Experimental study on CFRP drilling with the picosecond laser "double rotation―cutting technique. Optics and Laser Technology, 2021, 142, 107238.	4.6	28
60	Effect of growth rate on microstructure and mechanical properties in a directionally solidified Nb-silicide base alloy. Materials & Design, 2009, 30, 2274-2277.	5.1	27
61	Preliminary investigation on strong magnetic field treated NiAl–Cr(Mo)–Hf nearÂeutectic alloy. Intermetallics, 2011, 19, 143-148.	3.9	27
62	Influence of Zn Content on Microstructure and Tensile Properties of Mg–Zn–Y–Nd Alloy. Acta Metallurgica Sinica (English Letters), 2018, 31, 351-361.	2.9	26
63	Multifunctional, Robust, and Porous PHBV—GO/MXene Composite Membranes with Good Hydrophilicity, Antibacterial Activity, and Platelet Adsorption Performance. Polymers, 2021, 13, 3748.	4.5	26
64	The effect of strong magnetic field treatment on microstructure and room temperature compressive properties of NiAl–Cr(Mo)–Hf eutectic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 500, 238-243.	5.6	25
65	Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis. Transactions of Nonferrous Metals Society of China, 2012, 22, 489-495.	4.2	25
66	Deliberate Design of TiO ₂ Nanostructures towards Superior Photovoltaic Cells. Chemistry - A European Journal, 2016, 22, 11357-11364.	3.3	25
67	Influence of layer number on microstructure, mechanical properties and wear behavior of the TiN/Ti multilayer coatings fabricated by high-power magnetron sputtering deposition. Journal of Manufacturing Processes, 2021, 70, 529-542.	5.9	25
68	Effect of electrostatic field on microstructure and mechanical properties of the 316L stainless steel modified layer fabricated by laser cladding. Materials Characterization, 2022, 191, 112123.	4.4	25
69	Influence of Processing Parameters on Laser Direct Joining of CFRTP and Stainless Steel. Advances in Materials Science and Engineering, 2018, 2018, 1-15.	1.8	24
70	Effect of Interface Pretreatment of Al Alloy on Bonding Strength of the Laser Joined Al/CFRTP Butt Joint. Micromachines, 2021, 12, 179.	2.9	24
71	Wear properties of NiAl based materials. Progress in Natural Science: Materials International, 2012, 22, 414-425.	4.4	22
72	Fly compound-eye inspired inorganic nanostructures with extraordinary visible-light responses. Materials Today Chemistry, 2016, 1-2, 84-89.	3.5	22

#	Article	IF	CITATIONS
73	Microstructure and mechanical properties of the Ag/316L composite plate fabricated by explosive welding. Journal of Manufacturing Processes, 2021, 64, 265-275.	5.9	22
74	Microstructure and Mechanical Properties Determined in Compressive Tests of Quasi-Rapidly Solidified NiAl-Cr(Mo)-Hf Eutectic Alloy After Hot Isostatic Pressure and High Temperature Treatments. Journal of Materials Engineering and Performance, 2010, 19, 732-736.	2.5	20
75	Experimental study on the corrosion behavior and regeneration performance of KCOOH aqueous solution. Solar Energy, 2020, 201, 638-648.	6.1	20
76	Investigation on the microstructure and tensile behavior of a Ni-based IN792 superalloy. Advances in Mechanical Engineering, 2018, 10, 168781401775216.	1.6	16
77	Effect of withdrawal rate on microstructure and mechanical properties of a directionally solidified NiAl-based hypoeutectic alloy doped with trace Hf and Ho. Intermetallics, 2011, 19, 206-211.	3.9	15
78	Influence of hot working on microstructure and mechanical behavior of high nitrogen stainless steel. Journal of Materials Science, 2011, 46, 5097-5103.	3.7	15
79	Influence of Tantalum Addition on Microstructure and Mechanical Properties of the Nial-Based Eutectic Alloy. Strength of Materials, 2017, 49, 109-117.	0.5	15
80	Experimental and thermodynamic study of the Mg-Sn-Ca-Sr quaternary system: Part I-Mg-Sn-Ca ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 58, 6-16.	1.6	14
81	Antiâ€Adhesion Mesh for Hernia Repair Based on Modified Bacterial Cellulose. Starch/Staerke, 2018, 70, 1700319.	2.1	14
82	Hot Extrusion Effect on the Microstructure and Mechanical Properties of a Mg–Y–Nd–Zr Alloy. Strength of Materials, 2018, 50, 184-192.	0.5	14
83	Investigation on the crystal structure and mechanical properties of the ternary compound Mg11-xZnxSr combined with experimental measurements and first-principles calculations. Journal of Magnesium and Alloys, 2023, 11, 1074-1082.	11.9	14
84	Effect of growth rate on the tensile properties of DS NiAl/Cr(Mo) eutectic alloy produced by liquid metal cooling technique. Intermetallics, 2010, 18, 319-323.	3.9	13
85	The relationship between microstructure and in vivo degradation of modified bacterial cellulose sponges. Journal of Materials Chemistry B, 2015, 3, 9001-9010.	5.8	13
86	Shear deformation determined by short-range configuration of atoms in topologically close-packed crystal. Acta Materialia, 2019, 179, 396-405.	7.9	13
87	Microstructure and compressive properties of NiAl–Cr(Mo)–Dy near eutectic alloy prepared by suction casting. Materials Science and Technology, 2010, 26, 164-168.	1.6	12
88	Shear Strength Optimization of Laser-Joined Polyphenylene Sulfide-Based CFRTP and Stainless Steel. Strength of Materials, 2018, 50, 824-831.	0.5	12
89	Influence of Ho and Hf on the microstructure and mechanical properties of NiAl and NiAl-Cr(Mo) eutectic alloy. Materials Research Express, 2019, 6, 046502.	1.6	12
90	Microstructure and wear behaviour of ceramic particles strengthening NiAl based composite. Materials Research Innovations, 2014, 18, S4-544-S4-549.	2.3	11

#	Article	IF	CITATIONS
91	Microstructure and Wear Properties of the Quasi-Rapidly Solidified NiAl/Cr(Mo,Dy) Hypoeutectic Alloy. Strength of Materials, 2016, 48, 107-112.	0.5	11
92	Comparative evaluation of the biocompatible and physical–chemical properties of poly(lactide- <i>co</i> -glycolide) and polydopamine as coating materials for bacterial cellulose. Journal of Materials Chemistry B, 2019, 7, 630-639.	5.8	11
93	4SCAR2.0: a multi-CAR-T therapy regimen for the treatment of relapsed/refractory B cell lymphomas. Blood Cancer Journal, 2021, 11, 59.	6.2	11
94	Study on the Microstructure and Mechanical Properties of a Ti/Mg Alloy Clad Plate Produced by Explosive Welding. Metals, 2022, 12, 399.	2.3	11
95	Thermally stable coherent domain boundaries in complex-structured Cr ₂ Nb intermetallics. Philosophical Magazine, 2016, 96, 58-70.	1.6	10
96	Experimental determination of the phase equilibrium in the Mg–Cu–Ca ternary system at 350†°C. Journal of Alloys and Compounds, 2020, 818, 152865.	5.5	9
97	Experimental investigation and thermodynamic modeling of the Mg–Sn–Sr ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 72, 102237.	1.6	9
98	Effects of laser hybrid interfacial pretreatment on enhancing the carbon fiber reinforced thermosetting composites and TC4 alloy heterogeneous joint. Materials Today Communications, 2022, 30, 103142.	1.9	9
99	Graphene foam/hydrogel scaffolds for regeneration of peripheral nerve using ADSCs in a diabetic mouse model. Nano Research, 2022, 15, 3434-3445.	10.4	9
100	Assessment of the Microstructure and Mechanical Properties of a Laser-Joined Carbon Fiber-Reinforced Thermosetting Plastic and Stainless Steel. Strength of Materials, 2018, 50, 752-763.	0.5	8
101	Investigation on metallic glass formation in Mg-Zn-Sr ternary system combined with the CALPHAD method. Materials Letters, 2019, 256, 126628.	2.6	8
102	Hemophilia Gene Therapy: New Development from Bench to Bed Side. Current Gene Therapy, 2019, 19, 264-273.	2.0	8
103	Numerical Simulation on Pulsed Laser Ablation of the Single-Crystal Superalloy Considering Material Moving Front and Effect of Comprehensive Heat Dissipation. Micromachines, 2021, 12, 225.	2.9	8
104	Safety and efficacy of nano lamellar TiN coatings on nitinol atrial septal defect occluders in vivo. Materials Science and Engineering C, 2013, 33, 1355-1360.	7.3	7
105	Influence of Multi-Pass Hot Extrusion on Microstructure and Mechanical Properties of the Mg–4Zn–1.2Y–0.8Nd Alloy. Crystals, 2021, 11, 425.	2.2	7
106	MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NIAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 1318.	0.3	7
107	Microstructure and room temperature mechanical properties of Hf and Sn-doped Nb-20Ti-5Cr-3Al-18Si alloy. International Journal of Materials Research, 2008, 99, 1275-1279.	0.3	6
108	Single-neuron axonal pathfinding under geometric guidance: low-dose-methylmercury developmental neurotoxicity test. Lab on A Chip, 2014, 14, 3564.	6.0	6

#	Article	IF	CITATIONS
109	Microstructural Characteristics and Mechanical Properties of a Nb/Nb ₅ Si ₃ based Composite with and without Directional Solidification. Advanced Composites Letters, 2018, 27, 096369351802700.	1.3	6
110	Optimization of the Microstructure and Mechanical Properties of a Laves Phase-Strengthened Hypoeutectic NiAl/Cr(Mo,W) Alloy by Suction Casting. Strength of Materials, 2018, 50, 504-514.	0.5	6
111	Shuffle and glide mechanisms of prismatic dislocations in a hexagonal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>C </mml:mi> <mml:mn>14-type Laves-phase intermetallic compound. Physical Review B, 2020, 102, .</mml:mn></mml:mrow></mml:math 	າກ <i>ଃ⊈</i> mml:	m t ow>
112	Microstructure and mechanical properties of NiAl–Cr(Mo)–Hf/Ho near-eutectic alloy prepared by suction casting. International Journal of Materials Research, 2009, 100, 1602-1606.	0.3	6
113	Punch through float-zone silicon phototransistors with high linearity and sensitivity. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 547, 437-449.	1.6	5
114	Effect of the Surface Texture on Laser Joining of a Carbon Fiber-Reinforced Thermosetting Plastic and Stainless Steel. Strength of Materials, 2019, 51, 122-129.	0.5	5
115	EFFECTS OF RARE EARTH ELEMENT Gd ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAlCr(Mo)Hf EUTECTIC ALLOY. Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 46, 528-532.	0.3	5
116	Corrosion Behavior of TiNi Alloy Fabricated by Selective Laser Melting in Simulated Saliva. Coatings, 2022, 12, 840.	2.6	5
117	Influence of heat treatment and hot extrusion on the microstructure and tensile properties of rare earth modified Mg-Zn based alloy. IOP Conference Series: Materials Science and Engineering, 2018, 292, 012041.	0.6	4
118	Effect of heat treatment on morphology evolution of Ti ₂ Ni phase in Ti-Ni-Al-Zr alloy. IOP Conference Series: Materials Science and Engineering, 2018, 322, 022040.	0.6	4
119	Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets. Ceramics International, 2018, 44, 17530-17534.	4.8	4
120	A Co–Cr–Ni–W–C Alloy Processed by Multiple Rolling. Strength of Materials, 2020, 52, 103-109.	0.5	4
121	Inhibiting effect of I-phase formation on the plastic instability of the duplex structured Mg-8Li-6Zn-1.2Y (in wt.%) alloy. Journal of Magnesium and Alloys, 2023, 11, 2196-2204.	11.9	4
122	Improved Non-Piezoelectric Electric Properties Based on La Modulated Ferroelectric-Ergodic Relaxor Transition in (Bi0.5Na0.5)TiO3-Ba(Ti, Zr)O3 Ceramics. Materials, 2021, 14, 6666.	2.9	4
123	Development of a cellulose-based prosthetic mesh for pelvic organ prolapse treatment: In vivo long-term evaluation in an ewe vagina model. Materials Today Bio, 2021, 12, 100172.	5.5	4
124	Microstructure characteristics and mechanical properties of NiAl/Cr(Hf, Ho) in situ composite. Materials Research Innovations, 2015, 19, S9-111-S9-115.	2.3	3
125	Microstructure evolution of a Ti–Al–Sn–Zr based alloy during the hot compression deformation. Materials Express, 2019, 9, 1127-1133.	0.5	3
126	Fabrication of Cr2AlC coating from a cost-efficient Cr–Al–C target by arc ion plating. Surface Innovations, 2019, 7, 4-9.	2.3	3

#	Article	IF	CITATIONS
127	Effect of CaCl2 and NaHCO3 in Physiological Saline Solution on the Corrosion Behavior of an As-Extruded Mg–Zn–Y–Nd alloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 239-247.	2.9	3
128	Experimental measurement on the phase equilibria of the Mg–Ag–Cu ternary system at 350 and 400â€ [~] °C. Journal of Magnesium and Alloys, 2022, 10, 449-457.	11.9	3
129	Effects of Grain Refinement on the Low-Cycle Fatigue Behavior of IN792 Superalloys. Crystals, 2021, 11, 892.	2.2	3
130	Investigation of Al-Si-Cu-Zn-Y-Base Alloy Powders Prepared by Ultrasonic Gas Atomization for Brazing of an Al-Base Alloy. Strength of Materials, 2021, 53, 591-600.	0.5	3
131	The Effect of Gallium on the Mechanical Properties of Superalloy K444. Advanced Materials Research, 0, 452-453, 31-34.	0.3	2
132	Carbide Evolution of a Directionally Solidified Ni-Based Superalloy during Long-Term Exposure. Advanced Materials Research, 0, 452-453, 72-76.	0.3	2
133	Microstructure Characterization and Mechanical Properties of a Zn and Rare Earth Modified Mg Alloy. Applied Mechanics and Materials, 2015, 727-728, 111-114.	0.2	2
134	Elevated temperature compressive behavior of Nb-22Ti-16Si-7Cr-3Al-3Ta-2Hf alloy with minor Ho addition. International Journal of Materials Research, 2008, 99, 228-232.	0.3	2
135	A Research on Delayed Thermal Depolarization, Electric Properties, and Stress in (Bi0.5Na0.5)TiO3-Based Ceramic Composites. Materials, 2022, 15, 3180.	2.9	2
136	Investigation on Microstructure and Mechanical Properties of Directional Solidified DZ417G Alloy with Different Proportion of Recycling Alloy. Advanced Materials Research, 0, 452-453, 46-50.	0.3	1
137	Investigation on B, Cr Doped Ni ₃ Al Alloy Prepared by Self-Propagation High-Temperature Synthesis and Hot Extrusion. Materials Science Forum, 2013, 747-748, 124-131.	0.3	1
138	Characterization on the Precipitates in the Ti-Ni-Al-Zr Alloy during Heat Treatment. Applied Mechanics and Materials, 2015, 727-728, 103-106.	0.2	1
139	Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting. IOP Conference Series: Materials Science and Engineering, 2017, 167, 012052.	0.6	1
140	Experimental and Numerical Study on the Dehumidification Performance of KCOOH Solution. Proceedings (mdpi), 2018, 2, .	0.2	1
141	Characterization of Ni3Al Alloy Fabricated by Thermal Explosion and Hot Extrusion Process. Medziagotyra, 2018, 24, .	0.2	1
142	Research on microstructure properties of the TiC/Ni-Fe-Al coating prepared by laser cladding technology. , 2017, , .		1
143	Microstructure and Mechanical Property of a Directional Ni-Based Superalloy during Long-Term Exposure. Advanced Materials Research, 2012, 452-453, 51-55.	0.3	0
144	Study on the Transformation of (α+β) Phase to β Phase in Deformed Ti-6Al-4V Alloy during the Heat Treatment. Advanced Materials Research, 2012, 454, 97-100.	0.3	0

#	Article	IF	CITATIONS
145	The Effect of Gallium on the Microstructure of Superalloy K444. Advanced Materials Research, 0, 454, 118-121.	0.3	0
146	The Hot Deformation Behavior and Microstructural Evolution of Ti-6Al-2Zr-3Ni Alloy. Advanced Materials Research, 2012, 452-453, 61-65.	0.3	0
147	Investigation on Trace Dysprosium and Boron Doping NiAl-based Eutectic Alloy Fabricated by Injection Casting. , 2015, , .		0
148	Blood Compatibility of Oxidized Bacterial Cellulose/Silk Fibroin Composite Membrane. , 2015, , .		0
149	Characterization and Properties of TEMPO-oxidized Bacterial Cellulose-Hydroxypatite for Osseous Regeneration. , 2015, , .		0
150	Microstructure Evolution and Mechanical Properties of a Directionally Solidified Nb-Ti-Si-Cr-Al-Hf-Dy Alloy. MATEC Web of Conferences, 2016, 67, 03007.	0.2	0
151	TEM investigation on ceramic strengthening NiAl-based composite prepared by thermal explosion and hot extrusion. , 0, , .		0