
Zhaohui Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/130611/publications.pdf Version: 2024-02-01

<u> 7наонии Уг</u>

#	Article	IF	CITATIONS
1	Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Experimental Biology and Medicine, 2021, 246, 861-875.	2.4	5
2	Human-relevant preclinical in vitro models for studying hepatobiliary development and liver diseases using induced pluripotent stem cells. Experimental Biology and Medicine, 2019, 244, 702-708.	2.4	2
3	Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nature Communications, 2019, 10, 5353.	12.8	52
4	Biliary Atresia Relevant Human Induced Pluripotent Stem Cells Recapitulate Key Disease Features in a Dish. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 56-63.	1.8	25
5	Transient c-Src Suppression During Endodermal Commitment of Human Induced Pluripotent Stem Cells Results in Abnormal Profibrotic Cholangiocyte-Like Cells. Stem Cells, 2019, 37, 306-317.	3.2	9
6	A Universal Approach to Correct Various <i>HBB</i> Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease. Stem Cells Translational Medicine, 2018, 7, 87-97.	3.3	64
7	Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene. Stem Cell Research, 2017, 18, 57-59.	0.7	3
8	Derivation of a disease-specific human induced pluripotent stem cell line from a biliary atresia patient. Stem Cell Research, 2017, 24, 25-28.	0.7	4
9	A hypomorphic PIGA gene mutation causes severe defects in neuron development and susceptibility to complement-mediated toxicity in a human iPSC model. PLoS ONE, 2017, 12, e0174074.	2.5	13
10	A Method for Genome Editing in Human Pluripotent Stem Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot090217.	0.3	1
11	Genome Editing in Human Pluripotent Stem Cells. Cold Spring Harbor Protocols, 2016, 2016, pdb.top086819.	0.3	5
12	Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids. Stem Cell Reviews and Reports, 2016, 12, 500-508.	5.6	32
13	Gene correction in patient-specific iPSCs for therapy development and disease modeling. Human Genetics, 2016, 135, 1041-1058.	3.8	34
14	Generation, Characterization and Genetic Modification of Human iPSCs Containing Calr, MPL and JAK2 Mutations Found in MPN Patients. Blood, 2016, 128, 3139-3139.	1.4	1
15	Genome Editing in Human Pluripotent Stem Cells. Pancreatic Islet Biology, 2016, , 43-67.	0.3	0
16	Genome editing systems in novel therapies. Discovery Medicine, 2016, 21, 57-64.	0.5	7
17	Covalent Modification of a Cysteine Residue in the XPB Subunit of the General Transcription Factor TFIIH Through Single Epoxide Cleavage of the Transcription Inhibitor Triptolide. Angewandte Chemie - International Edition, 2015, 54, 1859-1863.	13.8	73
18	Modified Ham test for atypical hemolytic uremic syndrome. Blood, 2015, 125, 3637-3646.	1.4	88

Ζηαοήμι Υε

#	Article	IF	CITATIONS
19	Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation. Stem Cells, 2015, 33, 1470-1479.	3.2	164
20	A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells Under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach. Stem Cells Translational Medicine, 2015, 4, 320-332.	3.3	71
21	Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs. Molecular Therapy, 2015, 23, 570-577.	8.2	164
22	The Roles of RUNX1 in Human Hematopoiesis and Megakaryopoiesis Revealed By Genome-Targeted Human iPSCs and an Improved Hematopoietic Differentiation Model. Blood, 2015, 126, 1167-1167.	1.4	0
23	Early Frameshift Mutation in <i>PIGA</i> Identified in a Large XLID Family Without Neonatal Lethality. Human Mutation, 2014, 35, 350-355.	2.5	39
24	Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Science Translational Medicine, 2014, 6, 265ra168.	12.4	440
25	Roles of Reactive Oxygen Species in the Fate of Stem Cells. Antioxidants and Redox Signaling, 2014, 20, 1881-1890.	5.4	117
26	Differential Sensitivity to JAK Inhibitory Drugs by Isogenic Human Erythroblasts and Hematopoietic Progenitors Generated from Patient-Specific Induced Pluripotent Stem Cells. Stem Cells, 2014, 32, 269-278.	3.2	36
27	Whole-Genome Sequencing Analysis Reveals High Specificity of CRISPR/Cas9 and TALEN-Based Genome Editing in Human iPSCs. Cell Stem Cell, 2014, 15, 12-13.	11.1	315
28	Extensive Ex Vivo Expansion of Functional Human Erythroid Precursors Established From Umbilical Cord Blood Cells by Defined Factors. Molecular Therapy, 2014, 22, 451-463.	8.2	45
29	Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology, 2013, 57, 2458-2468.	7.3	216
30	Generation and Homing of iPSC-Derived Hematopoietic Cells In Vivo. Molecular Therapy, 2013, 21, 1292-1293.	8.2	7
31	Generation of Glycosylphosphatidylinositol Anchor Protein-Deficient Blood Cells From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013, 2, 819-829.	3.3	18
32	RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood, 2013, 121, 2882-2890.	1.4	111
33	Response: the role of RUNX1 isoforms in hematopoietic commitment of human pluripotent stem cells. Blood, 2013, 121, 5252-5253.	1.4	0
34	Efficient Derivation and Genetic Modifications of Human Pluripotent Stem Cells on Engineered Human Feeder Cell Lines. Stem Cells and Development, 2012, 21, 2298-2311.	2.1	29
35	Low Incidence of DNA Sequence Variation in Human Induced Pluripotent Stem Cells Generated by Nonintegrating Plasmid Expression. Cell Stem Cell, 2012, 10, 337-344.	11.1	226
36	Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nature Protocols, 2012, 7, 2013-2021.	12.0	142

Zhaohui Ye

#	Article	IF	CITATIONS
37	Promise and challenges of human iPSC-based hematologic disease modeling and treatment. International Journal of Hematology, 2012, 95, 601-609.	1.6	14
38	The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria. American Journal of Human Genetics, 2012, 90, 295-300.	6.2	146
39	Extensive Ex Vivo Expansion of Functional Human Erythroid Precursor Cells From Reprogrammed Post-Natal Blood Mononuclear Cells by Defined Factors. Blood, 2012, 120, 975-975.	1.4	0
40	Molecular Imaging and Stem Cell Research. Molecular Imaging, 2011, 10, 7290.2010.00046.	1.4	19
41	Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood, 2011, 117, 4773-4777.	1.4	155
42	Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood, 2011, 118, 1801-1805.	1.4	84
43	Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 2011, 21, 518-529.	12.0	420
44	Hematopoietic cells as sources for patient-specific iPSCs and disease modeling. Cell Cycle, 2011, 10, 2840-2844.	2.6	9
45	Liver engraftment potential of hepatic cells derived from patient-specific induced pluripotent stem cells. Cell Cycle, 2011, 10, 2423-2427.	2.6	57
46	Distinct Induced Pluripotent Stem Cell Clones with Somatic Mutations Prepared From PV Patients. Blood, 2011, 118, 2826-2826.	1.4	0
47	Molecular imaging and stem cell research. Molecular Imaging, 2011, 10, 111-22.	1.4	14
48	Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes. Hepatology, 2010, 51, 1810-1819.	7.3	219
49	Reply:. Hepatology, 2010, 52, 1169-1170.	7.3	3
50	Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency-Associated Genes. Stem Cells, 2010, 28, 713-720.	3.2	385
51	Potential of human induced pluripotent stem cells derived from blood and other postnatal cell types. Regenerative Medicine, 2010, 5, 521-530.	1.7	12
52	An Improved Method for Generating and Identifying Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2010, 636, 191-205.	0.9	16
53	Human IPS Cells Generated From Adult Peripheral Blood Cells and Purified CD34+ Cells by a Non-Integrating Plasmid Blood, 2010, 116, 1589-1589.	1.4	1
54	In vivo functional efficacy of tumor-specific T cells expanded using HLA-Ig based artificial antigen presenting cells (aAPC). Cancer Immunology, Immunotherapy, 2009, 58, 209-220.	4.2	43

Ζηαοήμι Υε

#	Article	IF	CITATIONS
55	Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Research, 2009, 19, 370-379.	12.0	52
56	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	11.1	505
57	Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 2009, 114, 5473-5480.	1.4	364
58	Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from Human Adult and Fetal Fibroblasts. Stem Cells, 2008, 26, 1998-2005.	3.2	266
59	Lentiviral Gene Transduction of Mouse and Human Stem Cells. Methods in Molecular Biology, 2008, 430, 243-253.	0.9	34
60	Trophoblast Differentiation Defect in Human Embryonic Stem Cells Lacking PIG-A and GPI-Anchored Cell-Surface Proteins. Cell Stem Cell, 2008, 2, 345-355.	11.1	50
61	Notch Signaling Activation in Human Embryonic Stem Cells Is Required for Embryonic, but Not Trophoblastic, Lineage Commitment. Cell Stem Cell, 2008, 2, 461-471.	11.1	98
62	The High-Mobility Group A1a/Signal Transducer and Activator of Transcription-3 Axis: An Achilles Heel for Hematopoietic Malignancies?. Cancer Research, 2008, 68, 10121-10127.	0.9	94
63	In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20641-20646.	7.1	261
64	The HMGA1a-STAT3 axis: an "Achilles Heel―for Hematopoietic Malignancies Overexpressing HMGA1a?. Blood, 2008, 112, 3810-3810.	1.4	1
65	Efficient Production of Human Hematopoietic Progenitors from Human Pluripotent Stem Cells Using Chemically Defined Media without Serum or Feeder Cells. Blood, 2008, 112, 2463-2463.	1.4	4
66	Inducible and Reversible Transgene Expression in Human Stem Cells After Efficient and Stable Gene Transfer. Stem Cells, 2007, 25, 779-789.	3.2	58
67	How Reproducible Is Bioluminescent Imaging of Tumor Cell Growth? Single Time Point versus the Dynamic Measurement Approach. Molecular Imaging, 2007, 6, 7290.2007.00031.	1.4	22
68	Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Research, 2007, 17, 62-72.	12.0	82
69	FLT3/ITD expression increases expansion, survival and entry into cell cycle of human haematopoietic stem/progenitor cells. British Journal of Haematology, 2007, 137, 64-75.	2.5	34
70	Developmental Potentials of Human Embryonic Stem Cells Lacking PIG-A and GPI-Anchored Proteins Blood, 2006, 108, 1314-1314.	1.4	0
71	Electrophysiological Properties of Pluripotent Human and Mouse Embryonic Stem Cells. Stem Cells, 2005, 23, 1526-1534.	3.2	81
72	Defining the Role of Wnt/β-Catenin Signaling in the Survival, Proliferation, and Self-Renewal of Human Embryonic Stem Cells. Stem Cells, 2005, 23, 1489-1501.	3.2	315

ΖΗΑΟΗUΙ ΥΕ

#	Article	IF	CITATIONS
73	Myocyte Enhancer Factor 2 Mediates Calcium-dependent Transcription of the Interleukin-2 Gene in T Lymphocytes. Journal of Biological Chemistry, 2004, 279, 14477-14480.	3.4	61
74	Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet, The, 2004, 364, 163-171.	13.7	153
75	FLT3/ITD Expression Increases Expansion, Survival and Entry into Cell Cycle of Human Hematopoietic Stem Cells Blood, 2004, 104, 484-484.	1.4	0
76	Human Adult Marrow Cells Support Prolonged Expansion of Human Embryonic Stem Cells in Culture. Stem Cells, 2003, 21, 131-142.	3.2	317
77	Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Molecular Therapy, 2003, 7, 827-838.	8.2	142
78	Lentivirus-Mediated Gene Transfer and Expression in Established Human Tumor Antigen-Specific Cytotoxic T Cells and Primary Unstimulated T Cells. Human Gene Therapy, 2003, 14, 1089-1105.	2.7	46
79	Making lentiviral vectors more powerful and universal. Discovery Medicine, 2003, 3, 48-9.	0.5	0
80	Targeting transgene expression to antigen-presenting cells derived from lentivirus-transduced engrafting human hematopoietic stem/progenitor cells. Blood, 2002, 99, 399-408.	1.4	135