Ping-Long Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1305554/publications.pdf

Version: 2024-02-01

218677 302126 2,102 40 26 39 citations h-index g-index papers 42 42 42 3113 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Revisiting the Mongolian Gerbil Model for Hepatitis E Virus by Reverse Genetics. Microbiology Spectrum, 2022, 10, e0219321.	3.0	7
2	A non-canonical cGAS–STING–PERK pathway facilitates the translational program critical for senescence and organ fibrosis. Nature Cell Biology, 2022, 24, 766-782.	10.3	84
3	Chemical regulation of the cGAS-STING pathway. Current Opinion in Chemical Biology, 2022, 69, 102170.	6.1	14
4	The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability. Molecular Cell, 2021, 81, 198-211.e6.	9.7	46
5	Crumbs proteins stabilize the cone mosaics of photoreceptors and improve vision in zebrafish. Journal of Genetics and Genomics, 2021, 48, 52-62.	3.9	1
6	The protein phosphatase PPM1A dephosphorylates and activates YAP to govern mammalian intestinal and liver regeneration. PLoS Biology, 2021, 19, e3001122.	5.6	13
7	Stk24 protects against obesity-associated metabolic disorders by disrupting the NLRP3 inflammasome. Cell Reports, 2021, 35, 109161.	6.4	12
8	AMBRA1 Promotes TGF \hat{I}^2 Signaling via Nonproteolytic Polyubiquitylation of Smad4. Cancer Research, 2021, 81, 5007-5020.	0.9	8
9	Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity. Molecular Cell, 2021, 81, 4147-4164.e7.	9.7	51
10	YAP drives fate conversion and chemoresistance of small cell lung cancer. Science Advances, 2021, 7, eabg1850.	10.3	52
11	HSPA13 facilitates NF-κB–mediated transcription and attenuates cell death responses in TNFα signaling. Science Advances, 2021, 7, eabh1756.	10.3	5
12	Interplay of MPP5a with Rab11 synergistically builds epithelial apical polarity and zonula adherens. Development (Cambridge), 2020, 147, .	2.5	0
13	IRF3 prevents colorectal tumorigenesis via inhibiting the nuclear translocation of \hat{l}^2 -catenin. Nature Communications, 2020, 11, 5762.	12.8	55
14	The Hippo Pathway in Innate Anti-microbial Immunity and Anti-tumor Immunity. Frontiers in Immunology, 2020, 11, 1473.	4.8	10
15	Stable Expression of a Hepatitis E Virus (HEV) RNA Replicon in Two Mammalian Cell Lines to Assess Mechanism of Innate Immunity and Antiviral Response. Frontiers in Microbiology, 2020, 11, 603699.	3.5	9
16	TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Molecular Cell, 2020, 80, 810-827.e7.	9.7	35
17	TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochimica Et Biophysica Sinica, 2020, 52, 757-767.	2.0	53
18	HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity. Nature Cell Biology, 2019, 21, 1027-1040.	10.3	163

#	Article	IF	CITATIONS
19	ALK phosphorylates SMAD4 on tyrosine to disable TGF- \hat{l}^2 tumour suppressor functions. Nature Cell Biology, 2019, 21, 179-189.	10.3	41
20	<scp>PTPN</scp> 3 acts as a tumor suppressor and boosts <scp>TGF</scp> â€Î² signaling independent of its phosphatase activity. EMBO Journal, 2019, 38, e99945.	7.8	15
21	An alternatively transcribed <i> <scp>TAZ</scp> </i> variant negatively regulates <scp>JAK</scp> ― <scp>STAT</scp> signaling. EMBO Reports, 2019, 20, .	4.5	14
22	Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate cell density–dependent proinflammatory responses. Journal of Biological Chemistry, 2018, 293, 18071-18085.	3.4	34
23	Lck/Hck/Fgr-Mediated Tyrosine Phosphorylation Negatively Regulates TBK1 to Restrain Innate Antiviral Responses. Cell Host and Microbe, 2017, 21, 754-768.e5.	11.0	29
24	Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Nature Cell Biology, 2017, 19, 362-374.	10.3	153
25	Oligomerization-primed coiled-coil domain interaction with Ubc13 confers processivity to TRAF6 ubiquitin ligase activity. Nature Communications, 2017, 8, 814.	12.8	41
26	Smad7 enables STAT3 activation and promotes pluripotency independent of TGF- \hat{l}^2 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10113-10118.	7.1	48
27	Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation. Genes and Development, 2016, 30, 1086-1100.	5.9	68
28	Posttranslational Regulation of Smads. Cold Spring Harbor Perspectives in Biology, 2016, 8, a022087.	5.5	73
29	PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1. Science Advances, 2016, 2, e1501889.	10.3	55
30	Loss of \hat{l}_{\pm} -Tubulin Acetylation Is Associated with TGF- \hat{l}^2 -induced Epithelial-Mesenchymal Transition. Journal of Biological Chemistry, 2016, 291, 5396-5405.	3.4	85
31	Nuclear Export of Smads by RanBP3L Regulates Bone Morphogenetic Protein Signaling and Mesenchymal Stem Cell Differentiation. Molecular and Cellular Biology, 2015, 35, 1700-1711.	2.3	37
32	Innate Antiviral Host Defense Attenuates TGF- \hat{l}^2 Function through IRF3-Mediated Suppression of Smad Signaling. Molecular Cell, 2014, 56, 723-737.	9.7	64
33	TACE Activation by MAPK-Mediated Regulation of Cell Surface Dimerization and TIMP3 Association. Science Signaling, 2012, 5, ra34.	3.6	129
34	Postâ€translational regulation of TGFâ€Î² receptor and Smad signaling. FEBS Letters, 2012, 586, 1871-1884.	2.8	162
35	Direct Activation of TACE-Mediated Ectodomain Shedding by p38 MAP Kinase Regulates EGF Receptor-Dependent Cell Proliferation. Molecular Cell, 2010, 37, 551-566.	9.7	223
36	TACE-Mediated Ectodomain Shedding of the Type I TGF-Î ² Receptor Downregulates TGF-Î ² Signaling. Molecular Cell, 2009, 35, 26-36.	9.7	120

#	Article	IF	CITATION
37	Molecular Mechanism for the Potentiation of the Transcriptional Activity of Human Liver Receptor Homolog 1 by Steroid Receptor Coactivator-1. Molecular Endocrinology, 2004, 18, 1887-1905.	3.7	44
38	Corepressor SMRT specifically represses the transcriptional activity of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2003, 35, 897-903.	0.1	6
39	Characterization of a strong repression domain in the hinge region of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochimica Et Biophysica Sinica, 2003, 35, 909-16.	0.1	2
40	Characterization of the genomic structure and tissue-specific promoter of the human nuclear receptor NR5A2 (hB1F) gene. Gene, 2001, 273, 239-249.	2.2	41