
## Vaughn S Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1305326/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <i>Staphylococcus aureus</i> genotype variation among and within periprosthetic joint infections.<br>Journal of Orthopaedic Research, 2022, 40, 420-428.                                                 | 2.3  | 7         |
| 2  | Whole-Genome Sequencing Surveillance and Machine Learning of the Electronic Health Record for Enhanced Healthcare Outbreak Detection. Clinical Infectious Diseases, 2022, 75, 476-482.                   | 5.8  | 42        |
| 3  | The Nutritional Environment Is Sufficient To Select Coexisting Biofilm and Quorum Sensing Mutants of Pseudomonas aeruginosa. Journal of Bacteriology, 2022, 204, JB0044421.                              | 2.2  | 8         |
| 4  | SprayNPray: user-friendly taxonomic profiling of genome and metagenome contigs. BMC Genomics, 2022, 23, 202.                                                                                             | 2.8  | 4         |
| 5  | Carbapenem-Resistant Acinetobacter baumannii in U.S. Hospitals: Diversification of Circulating<br>Lineages and Antimicrobial Resistance. MBio, 2022, 13, e0275921.                                       | 4.1  | 27        |
| 6  | Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during<br>Acinetobacter baumannii pneumonia in mice. Nature Microbiology, 2022, 7, 796-809.                    | 13.3 | 17        |
| 7  | Evolved resistance to a novel cationic peptide antibiotic requires high mutation supply. Evolution,<br>Medicine and Public Health, 2022, 10, 266-276.                                                    | 2.5  | 5         |
| 8  | Genomic Diversity of Hospital-Acquired Infections Revealed through Prospective Whole-Genome<br>Sequencing-Based Surveillance. MSystems, 2022, 7, .                                                       | 3.8  | 10        |
| 9  | Quorum sensing provides a molecular mechanism for evolution to tune and maintain investment in cooperation. ISME Journal, 2021, 15, 1236-1247.                                                           | 9.8  | 18        |
| 10 | Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic<br>Fungi. MSystems, 2021, 6, .                                                                        | 3.8  | 55        |
| 11 | Full characterization of plasmids from Achromobacter ruhlandii isolates recovered from a single patient with cystic fibrosis (CF). Revista Argentina De Microbiologia, 2021, , .                         | 0.7  | 0         |
| 12 | <i>In Vitro</i> Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa following<br>Treatment-Emergent Resistance to Ceftolozane-Tazobactam. Antimicrobial Agents and Chemotherapy,<br>2021, 65, . | 3.2  | 31        |
| 13 | Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nature Nanotechnology, 2021, 16, 996-1003.                                                     | 31.5 | 112       |
| 14 | Rampant prophage movement among transient competitors drives rapid adaptation during infection.<br>Science Advances, 2021, 7, .                                                                          | 10.3 | 14        |
| 15 | Quantitative mapping of mRNA 3' ends in Pseudomonas aeruginosa reveals a pervasive role for<br>premature 3' end formation in response to azithromycin. PLoS Genetics, 2021, 17, e1009634.                | 3.5  | 7         |
| 16 | Precise measurement of the fitness effects of spontaneous mutations by droplet digital PCR in<br><i>Burkholderia cenocepacia</i> . Genetics, 2021, 219, .                                                | 2.9  | 1         |
| 17 | Evolution towards Virulence in a <i>Burkholderia</i> Two-Component System. MBio, 2021, 12, e0182321.                                                                                                     | 4.1  | 3         |
| 18 | Polygenic Adaptation and Clonal Interference Enable Sustained Diversity in<br>Experimental <i>Pseudomonas aeruginosa</i> Populations. Molecular Biology and Evolution, 2021, 38,<br>5359-5375.           | 8.9  | 20        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The roles of history, chance, and natural selection in the evolution of antibiotic resistance. ELife, 2021, 10, .                                                                                                       | 6.0  | 20        |
| 20 | Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria.<br>Applied and Environmental Microbiology, 2021, 87, e0130621.                                                         | 3.1  | 9         |
| 21 | Emergence of an early SARS-CoV-2 epidemic in the United States. Cell, 2021, 184, 4939-4952.e15.                                                                                                                         | 28.9 | 31        |
| 22 | Outbreak of <i>Pseudomonas aeruginosa</i> Infections from a Contaminated Gastroscope Detected by<br>Whole Genome Sequencing Surveillance. Clinical Infectious Diseases, 2021, 73, e638-e642.                            | 5.8  | 26        |
| 23 | Adaptation and genomic erosion in fragmented Pseudomonas aeruginosa populations in the sinuses of people with cystic fibrosis. Cell Reports, 2021, 37, 109829.                                                          | 6.4  | 19        |
| 24 | Outbreak of Vancomycin-resistant Enterococcus faecium in Interventional Radiology: Detection<br>Through Whole-genome Sequencing-based Surveillance. Clinical Infectious Diseases, 2020, 70,<br>2336-2343.               | 5.8  | 43        |
| 25 | Negative frequencyâ€dependent selection maintains coexisting genotypes during fluctuating selection.<br>Molecular Ecology, 2020, 29, 138-148.                                                                           | 3.9  | 13        |
| 26 | One gene, multiple ecological strategies: A biofilm regulator is a capacitor for sustainable diversity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21647-21657.     | 7.1  | 18        |
| 27 | Comparative Evolutionary Patterns of Burkholderia cenocepacia and B. multivorans During Chronic<br>Co-infection of a Cystic Fibrosis Patient Lung. Frontiers in Microbiology, 2020, 11, 574626.                         | 3.5  | 7         |
| 28 | Experimental Evolution <i>In Vivo</i> To Identify Selective Pressures during Pneumococcal Colonization. MSystems, 2020, 5, .                                                                                            | 3.8  | 18        |
| 29 | Parallel Evolution of Tobramycin Resistance across Species and Environments. MBio, 2020, 11, .                                                                                                                          | 4.1  | 59        |
| 30 | Adaptation and Survival of Burkholderia cepacia and B. contaminans During Long-Term Incubation in<br>Saline Solutions Containing Benzalkonium Chloride. Frontiers in Bioengineering and Biotechnology,<br>2020, 8, 630. | 4.1  | 14        |
| 31 | Mapping of Influenza Virus RNA-RNA Interactions Reveals a Flexible Network. Cell Reports, 2020, 31, 107823.                                                                                                             | 6.4  | 50        |
| 32 | Complete Genome Sequences of 13 Bacillus subtilis Soil Isolates for Studying Secondary Metabolite<br>Diversity. Microbiology Resource Announcements, 2020, 9, .                                                         | 0.6  | 13        |
| 33 | Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria<br>in a single hospital. ELife, 2020, 9, .                                                                            | 6.0  | 85        |
| 34 | Environment changes epistasis to alter tradeâ€offs along alternative evolutionary paths. Evolution;<br>International Journal of Organic Evolution, 2019, 73, 2094-2105.                                                 | 2.3  | 28        |
| 35 | Pseudomonas aeruginosa Interstrain Dynamics and Selection of Hyperbiofilm Mutants during a<br>Chronic Infection. MBio, 2019, 10, .                                                                                      | 4.1  | 39        |
| 36 | A method of processing nasopharyngeal swabs to enable multiple testing. Pediatric Research, 2019, 86,<br>651-654.                                                                                                       | 2.3  | 12        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Forecasting Seasonal Vibrio parahaemolyticus Concentrations in New England Shellfish.<br>International Journal of Environmental Research and Public Health, 2019, 16, 4341.                                                                                      | 2.6 | 22        |
| 38 | High-Level Carbapenem Resistance in OXA-232-Producing Raoultella ornithinolytica Triggered by<br>Ertapenem Therapy. Antimicrobial Agents and Chemotherapy, 2019, 64, .                                                                                           | 3.2 | 11        |
| 39 | Evolution of Outbreak-Causing Carbapenem-Resistant Klebsiella pneumoniae ST258 at a Tertiary Care<br>Hospital over 8 Years. MBio, 2019, 10, .                                                                                                                    | 4.1 | 66        |
| 40 | NADH Dehydrogenases in Pseudomonas aeruginosa Growth and Virulence. Frontiers in Microbiology, 2019, 10, 75.                                                                                                                                                     | 3.5 | 20        |
| 41 | Reduced ceftazidime and ertapenem susceptibility due to production of OXA-2 in Klebsiella pneumoniae<br>ST258. Journal of Antimicrobial Chemotherapy, 2019, 74, 2203-2208.                                                                                       | 3.0 | 3         |
| 42 | EvolvingSTEM: a microbial evolution-in-action curriculum that enhances learning of evolutionary biology and biotechnology. Evolution: Education and Outreach, 2019, 12, 12.                                                                                      | 0.8 | 7         |
| 43 | Use of a cohorting-unit and systematic surveillance cultures to control a Klebsiella pneumoniae<br>carbapenemase (KPC)–producing Enterobacteriaceae outbreak. Infection Control and Hospital<br>Epidemiology, 2019, 40, 767-773.                                 | 1.8 | 5         |
| 44 | Use of online tools for antimicrobial resistance prediction by whole-genome sequencing in<br>methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE).<br>Journal of Global Antimicrobial Resistance, 2019, 19, 136-143.    | 2.2 | 17        |
| 45 | Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biology, 2019, 17, e3000123.                                                                                                            | 5.6 | 23        |
| 46 | Hidden resources in the <i>Escherichia coli</i> genome restore PLP synthesis and robust growth<br>after deletion of the essential gene <i>pdxB</i> . Proceedings of the National Academy of Sciences of<br>the United States of America, 2019, 116, 24164-24173. | 7.1 | 23        |
| 47 | Expression of myeloid Src-family kinases is associated with poor prognosis in AML and influences Flt3-ITD kinase inhibitor acquired resistance. PLoS ONE, 2019, 14, e0225887.                                                                                    | 2.5 | 16        |
| 48 | <i>Clostridioides difficile</i> : a potential source of NpmA in the clinical environment. Journal of<br>Antimicrobial Chemotherapy, 2019, 74, 521-523.                                                                                                           | 3.0 | 13        |
| 49 | Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. ELife, 2019, 8, .                                                                                                                             | 6.0 | 115       |
| 50 | Mutations that improve efficiency of a weak-link enzyme are rare compared to adaptive mutations elsewhere in the genome. ELife, 2019, 8, .                                                                                                                       | 6.0 | 17        |
| 51 | Frequency and Mechanisms of Spontaneous Fosfomycin Nonsusceptibility Observed upon Disk<br>Diffusion Testing of Escherichia coli. Journal of Clinical Microbiology, 2018, 56, .                                                                                  | 3.9 | 32        |
| 52 | Non-Uniform and Non-Random Binding of Nucleoprotein to Influenza A and B Viral RNA. Viruses, 2018,<br>10, 522.                                                                                                                                                   | 3.3 | 25        |
| 53 | Improved Detection of Culprit Pathogens by Bacterial DNA Sequencing Affects Antibiotic Management<br>Decisions in Severe Pneumonia. American Journal of Case Reports, 2018, 19, 1405-1409.                                                                       | 0.8 | 5         |
| 54 | Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evolution Letters, 2018, 2, 355-367.                                                                                                                       | 3.3 | 62        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synonymous mutations make dramatic contributions to fitness when growth is limited by a weak-link enzyme. PLoS Genetics, 2018, 14, e1007615.                                                                                   | 3.5  | 77        |
| 56 | Experimental Evolution as a High-Throughput Screen for Genetic Adaptations. MSphere, 2018, 3, .                                                                                                                                | 2.9  | 88        |
| 57 | New Insights from Elucidating the Role of LMP1 in Nasopharyngeal Carcinoma. Cancers, 2018, 10, 86.                                                                                                                             | 3.7  | 29        |
| 58 | Periodic Variation of Mutation Rates in Bacterial Genomes Associated with Replication Timing. MBio, 2018, 9, .                                                                                                                 | 4.1  | 30        |
| 59 | Phylogenomics of colistin-susceptible and resistant XDR Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2018, 73, 2952-2959.                                                                                   | 3.0  | 41        |
| 60 | The OmpR Regulator of Burkholderia multivorans Controls Mucoid-to-Nonmucoid Transition and<br>Other Cell Envelope Properties Associated with Persistence in the Cystic Fibrosis Lung. Journal of<br>Bacteriology, 2018, 200, . | 2.2  | 15        |
| 61 | Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight, 2018, 3, .                                                                                           | 5.0  | 36        |
| 62 | Genetic requirements for Staphylococcus aureus nitric oxide resistance and virulence. PLoS<br>Pathogens, 2018, 14, e1006907.                                                                                                   | 4.7  | 62        |
| 63 | Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa<br>Infections: Clinical Effectiveness and Evolution of Resistance. Clinical Infectious Diseases, 2017, 65,<br>110-120.                  | 5.8  | 224       |
| 64 | Sequence Type 631 Vibrio parahaemolyticus, an Emerging Foodborne Pathogen in North America.<br>Journal of Clinical Microbiology, 2017, 55, 645-648.                                                                            | 3.9  | 23        |
| 65 | Outbreak of <i>Klebsiella pneumoniae</i> Carbapenemase–Producing <i>Citrobacter freundii</i> at a<br>Tertiary Acute Care Facility in Miami, Florida. Infection Control and Hospital Epidemiology, 2017, 38,<br>320-326.        | 1.8  | 21        |
| 66 | RelA Mutant <i>Enterococcus faecium</i> with Multiantibiotic Tolerance Arising in an<br>Immunocompromised Host. MBio, 2017, 8, .                                                                                               | 4.1  | 72        |
| 67 | Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae. Journal of<br>Antimicrobial Chemotherapy, 2017, 72, 3035-3042.                                                                      | 3.0  | 59        |
| 68 | Parallel Evolution of Two Clades of an Atlantic-Endemic Pathogenic Lineage of Vibrio<br>parahaemolyticus by Independent Acquisition of Related Pathogenicity Islands. Applied and<br>Environmental Microbiology, 2017, 83, .   | 3.1  | 27        |
| 69 | Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Research, 2017, 45, 8968-8977.                                                                                                        | 14.5 | 75        |
| 70 | Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in <i>Vibrio<br/>cholerae</i> and <i>Vibrio fischeri</i> . Molecular Biology and Evolution, 2017, 34, 93-109.                                   | 8.9  | 81        |
| 71 | High-Level Fosfomycin Resistance in Vancomycin-Resistant Enterococcus faecium. Emerging Infectious<br>Diseases, 2017, 23, 1902-1904.                                                                                           | 4.3  | 23        |
| 72 | Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants<br>Recovered from a Cystic Fibrosis Patient. Frontiers in Microbiology, 2017, 8, 1027.                                        | 3.5  | 19        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure. PLoS ONE, 2017, 12, e0176191.                                                                                                                 | 2.5 | 17        |
| 74 | Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. ELife, 2017, 6, .                                                                                                                                 | 6.0 | 40        |
| 75 | Phylogenomic Study of Burkholderia glathei-like Organisms, Proposal of 13 Novel Burkholderia<br>Species and Emended Descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and<br>Burkholderia grimmiae. Frontiers in Microbiology, 2016, 7, 877. | 3.5 | 120       |
| 76 | Diverse phenotypic and genetic responses to short-term selection in evolving <i>Escherichia coli</i> populations. Evolution; International Journal of Organic Evolution, 2016, 70, 586-599.                                                                      | 2.3 | 28        |
| 77 | Long-Term Evolution of Burkholderia multivorans during a Chronic Cystic Fibrosis Infection Reveals<br>Shifting Forces of Selection. MSystems, 2016, 1, .                                                                                                         | 3.8 | 93        |
| 78 | Laboratory Evolution of Microbial Interactions in Bacterial Biofilms. Journal of Bacteriology, 2016, 198, 2564-2571.                                                                                                                                             | 2.2 | 69        |
| 79 | Benefit of transferred mutations is better predicted by the fitness of recipients than by their<br>ecological or genetic relatedness. Proceedings of the National Academy of Sciences of the United<br>States of America, 2016, 113, 5047-5052.                  | 7.1 | 41        |
| 80 | Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life. G3: Genes, Genomes, Genetics, 2016, 6, 2583-2591.                                                                                                                                     | 1.8 | 89        |
| 81 | Characterization of a Novel IncHI2 Plasmid Carrying Tandem Copies of <i>bla</i> <sub>CTX-M-2</sub><br>in a <i>fosA6</i> -Harboring Escherichia coli Sequence Type 410 Strain. Antimicrobial Agents and<br>Chemotherapy, 2016, 60, 6742-6747.                     | 3.2 | 12        |
| 82 | The Fitness Effects of Spontaneous Mutations Nearly Unseen by Selection in a Bacterium with Multiple Chromosomes. Genetics, 2016, 204, 1225-1238.                                                                                                                | 2.9 | 22        |
| 83 | Evolution of Ecological Diversity in Biofilms of Pseudomonas aeruginosa by Altered Cyclic<br>Diguanylate Signaling. Journal of Bacteriology, 2016, 198, 2608-2618.                                                                                               | 2.2 | 74        |
| 84 | Glutathione- <i>S</i> -transferase FosA6 of <i>Klebsiella pneumoniae</i> origin conferring fosfomycin<br>resistance in ESBL-producing <i>Escherichia coli</i> . Journal of Antimicrobial Chemotherapy, 2016, 71,<br>2460-2465.                                   | 3.0 | 49        |
| 85 | Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great<br>Bay Estuary, New Hampshire. PLoS ONE, 2016, 11, e0155018.                                                                                                   | 2.5 | 31        |
| 86 | Character displacement and the evolution of niche complementarity in a model biofilm community.<br>Evolution; International Journal of Organic Evolution, 2015, 69, 283-293.                                                                                     | 2.3 | 39        |
| 87 | Genetic characterization of clinical and environmental Vibrio parahaemolyticus from the Northeast<br>USA reveals emerging resident and non-indigenous pathogen lineages. Frontiers in Microbiology, 2015,<br>6, 272.                                             | 3.5 | 40        |
| 88 | The Rate and Molecular Spectrum of Spontaneous Mutations in the GC-Rich Multichromosome<br>Genome of <i>Burkholderia cenocepacia</i> . Genetics, 2015, 200, 935-946.                                                                                             | 2.9 | 75        |
| 89 | There and back again: consequences of biofilm specialization under selection for dispersal. Frontiers in Genetics, 2015, 6, 18.                                                                                                                                  | 2.3 | 26        |
| 90 | Use of Whole-Genome Phylogeny and Comparisons for Development of a Multiplex PCR Assay To<br>Identify Sequence Type 36 Vibrio parahaemolyticus. Journal of Clinical Microbiology, 2015, 53, 1864-1872.                                                           | 3.9 | 21        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from<br>Caenorhabditis briggsae. BMC Genomics, 2015, 16, 531.                                                                          | 2.8 | 27        |
| 92  | The Origins of Specialization: Insights from Bacteria Held 25 Years in Captivity. PLoS Biology, 2014, 12, e1001790.                                                                                                              | 5.6 | 22        |
| 93  | Antibiotic resistance correlates with transmission in plasmid evolution. Evolution; International Journal of Organic Evolution, 2014, 68, 3368-3380.                                                                             | 2.3 | 39        |
| 94  | Parallel evolution of small colony variants in Burkholderia cenocepacia biofilms. Genomics, 2014, 104, 447-452.                                                                                                                  | 2.9 | 47        |
| 95  | The Environment Affects Epistatic Interactions to Alter the Topology of an Empirical Fitness<br>Landscape. PLoS Genetics, 2013, 9, e1003426.                                                                                     | 3.5 | 94        |
| 96  | Tangled bank of experimentally evolved <i>Burkholderia</i> biofilms reflects selection during chronic infections. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E250-9.            | 7.1 | 183       |
| 97  | Influence of Seasonality on the Genetic Diversity of Vibrio parahaemolyticus in New Hampshire<br>Shellfish Waters as Determined by Multilocus Sequence Analysis. Applied and Environmental<br>Microbiology, 2012, 78, 3778-3782. | 3.1 | 31        |
| 98  | Evolutionary Effects of Translocations in Bacterial Genomes. Genome Biology and Evolution, 2012, 4, 1256-1262.                                                                                                                   | 2.5 | 28        |
| 99  | Ecological succession in long-term experimentally evolved biofilms produces synergistic communities. ISME Journal, 2011, 5, 369-378.                                                                                             | 9.8 | 151       |
| 100 | Ecology and Genetic Structure of a Northern Temperate Vibrio cholerae Population Related to Toxigenic Isolates. Applied and Environmental Microbiology, 2011, 77, 7568-7575.                                                     | 3.1 | 32        |
| 101 |                                                                                                                                                                                                                                  |     |           |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Mechanisms Causing Rapid and Parallel Losses of Ribose Catabolism in Evolving Populations of Escherichia coli B. Journal of Bacteriology, 2001, 183, 2834-2841.                                               | 2.2  | 260       |
| 110 | EVOLUTION OF THERMAL DEPENDENCE OF GROWTH RATE OF ESCHERICHIA COLI POPULATIONS DURING 20,000 GENERATIONS IN A CONSTANT ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2001, 55, 889.     | 2.3  | 144       |
| 111 | EVOLUTION OF THERMAL DEPENDENCE OF GROWTH RATE OF ESCHERICHIA COLI POPULATIONS DURING 20,000 GENERATIONS IN A CONSTANT ENVIRONMENT. Evolution; International Journal of Organic Evolution, 2001, 55, 889-896. | 2.3  | 9         |
| 112 | Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution. Microbiology (United Kingdom), 2001, 147, 995-1006.                                        | 1.8  | 48        |
| 113 | The population genetics of ecological specialization in evolving Escherichia coli populations. Nature, 2000, 407, 736-739.                                                                                    | 27.8 | 447       |
| 114 | TRADEOFF BETWEEN HORIZONTAL AND VERTICAL MODES OF TRANSMISSION IN BACTERIAL PLASMIDS. Evolution; International Journal of Organic Evolution, 1998, 52, 315-329.                                               | 2.3  | 120       |
| 115 | Experimental Evolution of Pathogens. , 0, , 215-224.                                                                                                                                                          |      | 0         |
| 116 | The Study of Microbial Adaptation by Long-Term Experimental Evolution. , 0, , 55-81.                                                                                                                          |      | 2         |