Yuko Fukata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1304720/publications.pdf Version: 2024-02-01

Υμκό Εμκλτλ

#	Article	IF	CITATIONS
1	Biallelic <i>ADAM22</i> pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain, 2022, 145, 2301-2312.	7.6	8
2	Insight into the function of a unique voltage-sensor protein (TMEM266) and its short form in mouse cerebellum. Biochemical Journal, 2022, , .	3.7	1
3	Acyl-PEGyl exchange gel-shift (APEGS) assay for palmitoylation quantification. Denki Eido, 2021, 65, 41-45.	0.0	0
4	Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nature Communications, 2021, 12, 1848.	12.8	19
5	MACUKs are essential, but redundant, in long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
6	Trans-synaptic LGI1–ADAM22–MAGUK in AMPA and NMDA receptor regulation. Neuropharmacology, 2021, 194, 108628.	4.1	20
7	LGI1–ADAM22–MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
8	A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Molecular Brain, 2021, 14, 173.	2.6	15
9	14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice. Cell Reports, 2021, 37, 110107.	6.4	10
10	Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. Journal of Experimental Medicine, 2021, 218, .	8.5	19
11	Human Cerebrospinal Fluid Monoclonal LGI1 Autoantibodies Increase Neuronal Excitability. Annals of Neurology, 2020, 87, 405-418.	5.3	72
12	Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex. Nature Communications, 2020, 11, 3253.	12.8	36
13	The extracellular domain of angulin-1 and palmitoylation of its cytoplasmic region are required for angulin-1 assembly at tricellular contacts. Journal of Biological Chemistry, 2020, 295, 4289-4302.	3.4	16
14	Targeting CCR5 trafficking to inhibit HIV-1 infection. Science Advances, 2019, 5, eaax0821.	10.3	26
15	Systematic Screening of Depalmitoylating Enzymes and Evaluation of Their Activities by the Acyl-PEGyl Exchange Gel-Shift (APEGS) Assay. Methods in Molecular Biology, 2019, 2009, 83-98.	0.9	15
16	Deleted in colorectal cancer (netrinâ€1 receptor) antibodies and limbic encephalitis in a cat with hippocampal necrosis. Journal of Veterinary Internal Medicine, 2019, 33, 1440-1445.	1.6	9
17	Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Science Signaling, 2019, 12, .	3.6	26
18	ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nature Chemical Biology, 2019, 15, 1232-1240.	8.0	72

#	Article	IF	CITATIONS
19	Structural basis of epilepsy-related ligand–receptor complex LGI1–ADAM22. Nature Communications, 2018, 9, 1546.	12.8	54
20	Long-term clinical follow-up of a patient with non-paraneoplastic cerebellar ataxia associated with anti-mGluR1 autoantibodies. Journal of Neuroimmunology, 2018, 319, 63-67.	2.3	13
21	Neurobiology of autoimmune encephalitis. Current Opinion in Neurobiology, 2018, 48, 1-8.	4.2	30
22	DHHC Proteins. , 2018, , 1367-1372.		0
23	Epilepsy and synaptic proteins. Current Opinion in Neurobiology, 2017, 45, 1-8.	4.2	68
24	In situ screening for postsynaptic cell adhesion molecules during synapse formation. Journal of Biochemistry, 2017, 162, 295-302.	1.7	2
25	Coupling of a voltageâ€gated Ca ²⁺ channel homologue with a plasma membrane H ⁺ â€ATPase in yeast. Genes To Cells, 2017, 22, 94-104.	1.2	5
26	lvermectin activates GIRK channels in a PIP ₂ â€dependent, G _{î²î³} â€independent manner and an amino acid residue at the slide helix governs the activation. Journal of Physiology, 2017, 595, 5895-5912.	2.9	33
27	The LGI1–ADAM22 protein complex in synaptic transmission and synaptic disorders. Neuroscience Research, 2017, 116, 39-45.	1.9	34
28	Dysfunctional ADAM22 implicated in progressive encephalopathy with cortical atrophy and epilepsy. Neurology: Genetics, 2016, 2, e46.	1.9	33
29	Local Palmitoylation Cycles andÂSpecialized Membrane Domain Organization. Current Topics in Membranes, 2016, 77, 97-141.	0.9	52
30	Identification of PSD-95 Depalmitoylating Enzymes. Journal of Neuroscience, 2016, 36, 6431-6444.	3.6	189
31	Postsynaptic nanodomains generated by local palmitoylation cycles. Biochemical Society Transactions, 2015, 43, 199-204.	3.4	9
32	The LGI1–ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4129-37.	7.1	80
33	Chemical corrector treatment ameliorates increased seizure susceptibility in a mouse model of familial epilepsy. Nature Medicine, 2015, 21, 19-26.	30.7	63
34	Non-Microtubular Localizations of Microtubule-Associated Protein 6 (MAP6). PLoS ONE, 2014, 9, e114905.	2.5	10
35	Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination. Development (Cambridge), 2014, 141, 1749-1756.	2.5	30
36	Identification and Characterization of GABAA Receptor Autoantibodies in Autoimmune Encephalitis. Journal of Neuroscience, 2014, 34, 8151-8163.	3.6	108

#	Article	IF	CITATIONS
37	Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination. Journal of Cell Science, 2014, 127, e1-e1.	2.0	0
38	Local palmitoylation cycles define activity-regulated postsynaptic subdomains. Journal of Cell Biology, 2013, 202, 145-161.	5.2	239
39	In Silico Screening for Palmitoyl Substrates Reveals a Role for DHHC1/3/10 (zDHHC1/3/11)-mediated Neurochondrin Palmitoylation in Its Targeting to Rab5-positive Endosomes. Journal of Biological Chemistry, 2013, 288, 19816-19829.	3.4	35
40	Neuronal major histocompatibility complex class I molecules are implicated in the generation of asymmetries in hippocampal circuitry. Journal of Physiology, 2013, 591, 4777-4791.	2.9	23
41	Autoantibodies to Epilepsy-Related LGI1 in Limbic Encephalitis Neutralize LGI1-ADAM22 Interaction and Reduce Synaptic AMPA Receptors. Journal of Neuroscience, 2013, 33, 18161-18174.	3.6	288
42	Phosphatidylinositol 4-Kinase IIα Is Palmitoylated by Golgi-localized Palmitoyltransferases in Cholesterol-dependent Manner. Journal of Biological Chemistry, 2012, 287, 21856-21865.	3.4	77
43	Synaptic Plasticity Regulated by Protein–Protein Interactions and Posttranslational Modifications. International Review of Cell and Molecular Biology, 2012, 297, 1-43.	3.2	35
44	Leucineâ€rich glioma inactivated 1 (Lgi1), an epilepsyâ€related secreted protein, has a nuclear localization signal and localizes to both the cytoplasm and the nucleus of the caudal ganglionic eminence neurons. European Journal of Neuroscience, 2012, 36, 2284-2292.	2.6	12
45	Subcellular Golgi localization of stathmin family proteins is promoted by a specific set of DHHC palmitoyl transferases. Molecular Biology of the Cell, 2011, 22, 1930-1942.	2.1	29
46	LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs. PLoS Genetics, 2011, 7, e1002194.	3.5	88
47	Protein palmitoylation in neuronal development and synaptic plasticity. Nature Reviews Neuroscience, 2010, 11, 161-175.	10.2	532
48	Ndel1 palmitoylation: a new mean to regulate cytoplasmic dynein activity. EMBO Journal, 2010, 29, 107-119.	7.8	49
49	Disruption of LGI1–linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3799-3804.	7.1	287
50	Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation. PLoS Genetics, 2009, 5, e1000748.	3.5	81
51	Identification of G Protein α Subunit-Palmitoylating Enzyme. Molecular and Cellular Biology, 2009, 29, 435-447.	2.3	127
52	Differential Activity-Dependent Secretion of Brain-Derived Neurotrophic Factor from Axon and Dendrite. Journal of Neuroscience, 2009, 29, 14185-14198.	3.6	226
53	The Hydrophobic Cysteine-rich Domain of SNAP25 Couples with Downstream Residues to Mediate Membrane Interactions and Recognition by DHHC Palmitoyl Transferases. Molecular Biology of the Cell, 2009, 20, 1845-1854.	2.1	75
54	Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. Journal of Cell Biology, 2009, 186, 147-160.	5.2	194

#	Article	IF	CITATIONS
55	Dynamic protein palmitoylation in cellular signaling. Progress in Lipid Research, 2009, 48, 117-127.	11.6	95
56	Discovery of protein-palmitoylating enzymes. Pflugers Archiv European Journal of Physiology, 2008, 456, 1199-1206.	2.8	84
57	Palmitoylation and Membrane Interactions of the Neuroprotective Chaperone Cysteine-string Protein. Journal of Biological Chemistry, 2008, 283, 25014-25026.	3.4	110
58	Fibroblast Growth Factor-Regulated Palmitoylation of the Neural Cell Adhesion Molecule Determines Neuronal Morphogenesis. Journal of Neuroscience, 2008, 28, 8897-8907.	3.6	63
59	Stargazin interacts functionally with the AMPA receptor glutamate-binding module. Neuropharmacology, 2007, 52, 87-91.	4.1	61
60	GM1-ganglioside-induced Aβ assembly on synaptic membranes of cultured neurons. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1128-1137.	2.6	51
61	Epilepsy-Related Ligand/Receptor Complex LGI1 and ADAM22 Regulate Synaptic Transmission. Science, 2006, 313, 1792-1795.	12.6	352
62	Systematic screening for palmitoyl transferase activity of the DHHC protein family in mammalian cells. Methods, 2006, 40, 177-182.	3.8	108
63	Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. Journal of Cell Biology, 2006, 174, 369-377.	5.2	146
64	GODZ-Mediated Palmitoylation of GABAA Receptors Is Required for Normal Assembly and Function of GABAergic Inhibitory Synapses. Journal of Neuroscience, 2006, 26, 12758-12768.	3.6	148
65	Protein Palmitoylation by DHHC Protein Family. Frontiers in Neuroscience, 2006, , 83-89.	0.0	10
66	Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones. Molecular and Cellular Biology, 2005, 25, 9973-9984.	2.3	234
67	Molecular constituents of neuronal AMPA receptors. Journal of Cell Biology, 2005, 169, 399-404.	5.2	105
68	Positive Role of IQGAP1, an Effector of Rac1, in Actin-Meshwork Formation at Sites of Cell-Cell Contact. Molecular Biology of the Cell, 2004, 15, 1065-1076.	2.1	122
69	Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nature Cell Biology, 2004, 6, 328-334.	10.3	255
70	PIP ₃ is involved in neuronal polarization and axon formation. Journal of Neurochemistry, 2004, 89, 109-118.	3.9	193
71	Role of CRMP-2 in neuronal polarity. Journal of Neurobiology, 2004, 58, 34-47.	3.6	168
72	Identification of PSD-95 Palmitoylating Enzymes. Neuron, 2004, 44, 987-996.	8.1	483

#	Article	IF	CITATIONS
73	Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. Journal of Neurochemistry, 2003, 87, 780-790.	3.9	91
74	CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nature Cell Biology, 2003, 5, 819-826.	10.3	227
75	Translocation of Na+,K+-ATPase is induced by Rho small GTPase in renal epithelial cells. Biochemical and Biophysical Research Communications, 2002, 297, 1231-1237.	2.1	16
76	Axon specification in hippocampal neurons. Neuroscience Research, 2002, 43, 305-315.	1.9	88
77	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biology, 2002, 4, 583-591.	10.3	687
78	Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends in Pharmacological Sciences, 2001, 22, 32-39.	8.7	693
79	Purification and in vitro activity of Rho-associated kinase. Methods in Enzymology, 2000, 325, 149-155.	1.0	16
80	Phosphorylation of ERM proteins at filopodia induced by Cdc42. Genes To Cells, 2000, 5, 571-581.	1.2	108
81	Inhibition of Myosin Phosphatase by Upregulated Rho-Kinase Plays a Key Role for Coronary Artery Spasm in a Porcine Model With Interleukin-1β. Circulation, 2000, 101, 1319-1323.	1.6	257
82	Elongation Factor-1α Is a Novel Substrate of Rho-Associated Kinase. Biochemical and Biophysical Research Communications, 2000, 278, 72-78.	2.1	64
83	Regulation and Functions of Rho-Associated Kinase. Experimental Cell Research, 2000, 261, 44-51.	2.6	466
84	Phosphorylation of Adducin by Rho-Kinase Plays a Crucial Role in Cell Motility. Journal of Cell Biology, 1999, 145, 347-361.	5.2	278
85	Phosphorylation of Myosin-Binding Subunit (Mbs) of Myosin Phosphatase by Rho-Kinase in Vivo. Journal of Cell Biology, 1999, 147, 1023-1038.	5.2	520
86	Activation of moesin and adducin by Rho-kinase downstream of Rho. Biophysical Chemistry, 1999, 82, 139-147.	2.8	30
87	Regulation of Cytoskeleton and Cell Adhesions by the Small GTPase Rho and Its Targets. Trends in Cardiovascular Medicine, 1998, 8, 162-168.	4.9	9
88	Myosin II activation promotes neurite retraction during the action of Rho and Rhoâ€kinase. Genes To Cells, 1998, 3, 177-188.	1.2	236
89	Regulation of the Association of Adducin with Actin Filaments by Rho-associated Kinase (Rho-kinase) and Myosin Phosphatase. Journal of Biological Chemistry, 1998, 273, 5542-5548.	3.4	186
90	Association of the Myosin-binding Subunit of Myosin Phosphatase and Moesin: Dual Regulation of Moesin Phosphorylation by Rho-associated Kinase and Myosin Phosphatase. Journal of Cell Biology, 1998, 141, 409-418.	5.2	197

#	Article	IF	CITATIONS
91	Phosphorylation of Moesin by Rho-associated Kinase (Rho-kinase) Plays a Crucial Role in the Formation of Microvilli-like Structures. Journal of Biological Chemistry, 1998, 273, 34663-34666.	3.4	208
92	Formation of Actin Stress Fibers and Focal Adhesions Enhanced by Rho-Kinase. Science, 1997, 275, 1308-1311.	12.6	999
93	Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). Journal of Biological Chemistry, 1996, 271, 20246-20249.	3.4	1,767
94	CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. , 0, .		1