
Antonio Oliviero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1303832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVIDâ€19. European Journal of Neurology, 2022, 29, 1652-1662.	3.3	44
2	Editorial: Non-invasive Brain Stimulation for Neurodegenerative Disorders: From Investigation to Therapeutic Application. Frontiers in Neurology, 2022, 13, 820942.	2.4	2
3	Static magnetic field stimulation over motor cortex modulates resting functional connectivity in humans. Scientific Reports, 2022, 12, 7834.	3.3	2
4	Home-based transcranial static magnetic field stimulation of the motor cortex for treating levodopa-induced dyskinesias in Parkinson's disease: A randomized controlled trial. Brain Stimulation, 2022, 15, 857-860.	1.6	7
5	COVID-19 Pulmonary and Olfactory Dysfunctions: Is the Chemokine CXCL10 the Common Denominator?. Neuroscientist, 2021, 27, 214-221.	3.5	49
6	Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. Journal of the Neurological Sciences, 2021, 420, 117271.	0.6	181
7	Peripheral-central interplay for fatiguing unresisted repetitive movements: a study using muscle ischaemia and M1 neuromodulation. Scientific Reports, 2021, 11, 2075.	3.3	5
8	Intracortical GABAergic dysfunction in patients with fatigue and dysexecutive syndrome after COVID-19. Clinical Neurophysiology, 2021, 132, 1138-1143.	1.5	54
9	Phase II/III placebo-controlled randomized trial of safety and efficacy of growth hormone treatment in incomplete chronic traumatic spinal cord injury. Spinal Cord, 2021, 59, 917-924.	1.9	Ο
10	Cortical layerâ€specific modulation of neuronal activity after sensory deprivation due to spinal cord injury. Journal of Physiology, 2021, 599, 4643-4669.	2.9	3
11	Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical Neurophysiology, 2020, 131, 474-528.	1.5	1,017
12	Transcranial static magnetic stimulation —From bench to bedside and beyond—. Neuroscience Research, 2020, 156, 250-255.	1.9	13
13	Effects of fatigue induced by repetitive movements and isometric tasks on reaction time. Human Movement Science, 2020, 73, 102679.	1.4	13
14	A framework to assess the impact of number of trials on the amplitude of motor evoked potentials. Scientific Reports, 2020, 10, 21422.	3.3	18
15	Influence of Static Magnetic Field Stimulation on the Accuracy of Tachystoscopically Presented Line Bisection. Brain Sciences, 2020, 10, 1006.	2.3	7
16	Cortical disinhibition in Parkinson's disease. Brain, 2020, 143, 3408-3421.	7.6	47
17	Effects of COVID-19 lockdown on chronic drug-resistant pain patients treated using brain stimulation approaches. Brain Stimulation, 2020, 13, 1089-1090.	1.6	4
18	Balancing the need for rapid and rigorous scientific data during early phase of the COVID-19 pandemic: A further role for the scientific community. European Journal of Internal Medicine, 2020, 77, 152.	2.2	3

#	Article	IF	CITATIONS
19	Effects of Moderate Static Magnetic Field on Neural Systems Is a Non-invasive Mechanical Stimulation of the Brain Possible Theoretically?. Frontiers in Neuroscience, 2020, 14, 419.	2.8	16
20	Theta burst stimulation: Technical aspects about TMS devices. Brain Stimulation, 2020, 13, 562-564.	1.6	11
21	Significant influence of static magnetic field stimulation applied for 30 minutes over the human M1 on corticospinal excitability. Brain Stimulation, 2020, 13, 751-752.	1.6	2
22	Action boosts episodic memory encoding in humans via engagement of a noradrenergic system. Nature Communications, 2019, 10, 3534.	12.8	44
23	Static magnetic field stimulation of the supplementary motor area modulates resting-state activity and motor behavior. Communications Biology, 2019, 2, 397.	4.4	24
24	Development of chronic pain in males with traumatic spinal cord injury: role of circulating levels of the chemokines CCL2 and CXCL10 in subacute stage. Spinal Cord, 2019, 57, 953-959.	1.9	19
25	Fatigue in Multiple Sclerosis: General and Perceived Fatigue Does Not Depend on Corticospinal Tract Dysfunction. Frontiers in Neurology, 2019, 10, 339.	2.4	25
26	Cognitive performance of people with traumatic spinal cord injury: a cross-sectional study comparing people with subacute and chronic injuries. Spinal Cord, 2018, 56, 796-805.	1.9	37
27	Long-lasting effects of transcranial static magnetic field stimulation on motor cortex excitability. Brain Stimulation, 2018, 11, 676-688.	1.6	52
28	Postoperative rehabilitation after deep brain stimulation surgery for movement disorders. Clinical Neurophysiology, 2018, 129, 592-601.	1.5	17
29	Transcranial static magnetic field stimulation (tSMS) of the visual cortex decreases experimental photophobia. Cephalalgia, 2018, 38, 1493-1497.	3.9	26
30	Transcranial Static Magnetic Field Stimulation over the Primary Motor Cortex Induces Plastic Changes in Cortical Nociceptive Processing. Frontiers in Human Neuroscience, 2018, 12, 63.	2.0	22
31	Effects of patterned peripheral nerve stimulation on soleus spinal motor neuron excitability. PLoS ONE, 2018, 13, e0192471.	2.5	11
32	Stuttering and levetiracetam: Case report and research proposal. Annals of Clinical Psychiatry, 2018, 30, 68-69.	0.6	1
33	Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas. Journal of Neurosurgery, 2017, 126, 1323-1333.	1.6	43
34	Early spermatogenesis changes in traumatic complete spinal cord-injured adult patients. Spinal Cord, 2017, 55, 570-574.	1.9	8
35	Static Magnetic Field Stimulation over Parietal Cortex Enhances Somatosensory Detection in Humans. Journal of Neuroscience, 2017, 37, 3840-3847.	3.6	43
36	Effects of transcranial direct current stimulation on temperature and pain perception. Scientific Reports, 2017, 7, 2946.	3.3	13

#	Article	IF	CITATIONS
37	Prevalence of Fatigue and Associated Factors in a Spinal Cord Injury Population: Data from an Internet-Based and Face-to-Face Surveys. Journal of Neurotrauma, 2017, 34, 2335-2341.	3.4	14
38	Response of Spinal Excitability to Different Short-Lasting Motor Tasks: Preliminary Results. Biosystems and Biorobotics, 2017, , 1007-1012.	0.3	0
39	Editorial: Non-invasive Brain Stimulation in Neurology and Psychiatry. Frontiers in Neuroscience, 2016, 10, 574.	2.8	6
40	Bilateral tDCS on Primary Motor Cortex: Effects on Fast Arm Reaching Tasks. PLoS ONE, 2016, 11, e0160063.	2.5	14
41	New Insights from Clinical Assessment of Upper Extremities in Cervical Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 1724-1727.	3.4	7
42	Differential responses of spinal motoneurons to fatigue induced by short-lasting repetitive and isometric tasks. Neuroscience, 2016, 339, 655-666.	2.3	15
43	Central fatigue induced by short-lasting finger tapping and isometric tasks: A study of silent periods evoked at spinal and supraspinal levels. Neuroscience, 2015, 305, 316-327.	2.3	32
44	Static Magnetic Field Stimulation over the Visual Cortex Increases Alpha Oscillations and Slows Visual Search in Humans. Journal of Neuroscience, 2015, 35, 9182-9193.	3.6	108
45	Safety Study of Transcranial Static Magnetic Field Stimulation (tSMS) of the Human Cortex. Brain Stimulation, 2015, 8, 481-485.	1.6	41
46	Evolution of EEG Motor Rhythms after Spinal Cord Injury: A Longitudinal Study. PLoS ONE, 2015, 10, e0131759.	2.5	48
47	Balancing the excitability of M1 circuitry during movement observation without overt replication. Frontiers in Behavioral Neuroscience, 2014, 8, 316.	2.0	2
48	Magnetic Field Strength and Reproducibility of Neodymium Magnets Useful for Transcranial Static Magnetic Field Stimulation of the Human Cortex. Neuromodulation, 2014, 17, 438-442.	0.8	37
49	Cortical reorganization after spinal cord injury: Always for good?. Neuroscience, 2014, 283, 78-94.	2.3	100
50	Pain Treatment Using tDCS in a Single Patient: Tele-medicine Approach in Non-invasive Brain Simulation. Brain Stimulation, 2014, 7, 334-335.	1.6	19
51	Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014, 125, 2150-2206.	1.5	1,647
52	The effects of expectancy on corticospinal excitability: passively preparing to observe a movement. Journal of Neurophysiology, 2014, 111, 1479-1486.	1.8	5
53	Efectos de los campos magnéticos estáticos sobre la corteza cerebral. , 2014, , 127-133.		0
54	Promising Tools in Neurorehabilitation: Non-invasive Neuromodulation of the Central Nervous System. Biosystems and Biorobotics, 2013, , 1077-1081.	0.3	0

#	Article	IF	CITATIONS
55	Severe Disability in Patients with Relapsing-Remitting Multiple Sclerosis Is Associated with Profound Changes in the Regulation of Leptin Secretion. NeuroImmunoModulation, 2013, 20, 341-347.	1.8	26
56	Transcranial Direct Current Stimulation Effects on the Excitability of Corticospinal Axons of the Human Cerebral Cortex. Brain Stimulation, 2013, 6, 641-643.	1.6	56
57	Improvement of intraâ€epidermal nerve fibre density in hypothyroidism after <scp>L</scp> â€thyroxine therapy. Clinical Endocrinology, 2013, 78, 152-153.	2.4	4
58	New Technologies for Stroke Rehabilitation. Stroke Research and Treatment, 2013, 2013, 1-2.	0.8	11
59	tDCS Modulates Motor Imagery-Related BCI Features. Biosystems and Biorobotics, 2013, , 647-651.	0.3	5
60	Editorial Note on: Neurophysiological assessment of spine disorders: old fashion techniques for modern clinical problems. Spinal Cord, 2012, 50, 439-439.	1.9	0
61	High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca's area. NeuroReport, 2012, 23, 304-309.	1.2	17
62	CB1 receptor antagonism/inverse agonism increases motor system excitability in humans. European Neuropsychopharmacology, 2012, 22, 27-35.	0.7	9
63	fMRI brain mapping with kernels. , 2012, , .		0
64	rTMS stimulation to induce plastic changes at the language motor area in a patient with a left recidivant brain tumor affecting Broca's area. Neurocase, 2012, 18, 132-138.	0.6	19
65	A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clinical Neurophysiology, 2012, 123, 858-882.	1.5	944
66	Effects of simultaneous bilateral tDCS of the human motor cortex. Brain Stimulation, 2012, 5, 214-222.	1.6	91
67	I-wave origin and modulation. Brain Stimulation, 2012, 5, 512-525.	1.6	276
68	Analysis of fMRI time series with mutual information. Medical Image Analysis, 2012, 16, 451-458.	11.6	20
69	Cooperative 3D Air Quality Assessment with Wireless Chemical Sensing Networks. Procedia Engineering, 2011, 25, 84-87.	1.2	21
70	Complications of tracheostomy after anterior cervical spine fixation surgery. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2011, 32, 408-411.	1.3	12
71	Transcranial static magnetic field stimulation of the human motor cortex. Journal of Physiology, 2011, 589, 4949-4958.	2.9	132
72	Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats. Journal of Physiology, 2011, 589, 4981-4996.	2.9	67

#	Article	IF	CITATIONS
73	Spinal cord injury immediately decreases anesthetic requirements in rats. Spinal Cord, 2011, 49, 822-826.	1.9	15
74	Interferon-β but not Glatiramer acetate stimulates CXCL10 secretion in primary cultures of thyrocytes: A clue for understanding the different risks of thyroid dysfunctions in patients with multiple sclerosis treated with either of the two drugs. Journal of Neuroimmunology, 2011, 234, 161-164.	2.3	9
75	Studying plasticity of sensory function: insight from pregnancy. Experimental Brain Research, 2011, 209, 311-316.	1.5	1
76	Transcranial direct current stimulation effects on I-wave activity in humans. Journal of Neurophysiology, 2011, 105, 2802-2810.	1.8	53
77	Tracheostomy in spinal cord injured patients. Translational Medicine @ UniSa, 2011, 1, 151-72.	0.5	6
78	A Severe Case of High Cervical Spinal Cord Injury without Radiographic Abnormality. European Neurology, 2010, 63, 188-188.	1.4	2
79	Spinal Cord Injury Immediately Changes the State of the Brain. Journal of Neuroscience, 2010, 30, 7528-7537.	3.6	136
80	Intraepidermal nerve fiber density reduction as a marker of preclinical asymptomatic small-fiber sensory neuropathy in hypothyroid patients. European Journal of Endocrinology, 2010, 163, 279-284.	3.7	26
81	The effects of motor cortex rTMS on corticospinal descending activity. Clinical Neurophysiology, 2010, 121, 464-473.	1.5	115
82	Prefrontal hemodynamic changes produced by anodal direct current stimulation. NeuroImage, 2010, 49, 2304-2310.	4.2	149
83	Tracheostomy timing in traumatic spinal cord injury. European Spine Journal, 2009, 18, 1452-1457.	2.2	88
84	Functional involvement of central nervous system at high altitude. Experimental Brain Research, 2009, 194, 157-162.	1.5	18
85	LTD-like plasticity induced by paired associative stimulation: direct evidence in humans. Experimental Brain Research, 2009, 194, 661-664.	1.5	53
86	Unaffected motor cortex remodeling after hemispherectomy in an epileptic cerebral palsy patient. A TMS and fMRI study. Epilepsy Research, 2009, 85, 243-251.	1.6	28
87	Reduced cerebral cortex inhibition in dystonia: Direct evidence in humans. Clinical Neurophysiology, 2009, 120, 834-839.	1.5	20
88	The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Journal of Physiology, 2008, 586, 3871-3879.	2.9	267
89	Lowâ€frequency repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. Journal of Physiology, 2008, 586, 4481-4487.	2.9	59
90	Effects of baclofen on temperature perception in humans. Neuroscience Research, 2007, 59, 89-92.	1.9	6

#	Article	IF	CITATIONS
91	Mecanismos fisiopatológicos y avances en la investigación del dolor neuropático. Rehabilitacion, 2006, 40, 3-8.	0.4	0
92	Brain plasticity in recovery from stroke: An MEG assessment. NeuroImage, 2006, 32, 1326-1334.	4.2	84
93	Origin of Facilitation of Motor-Evoked Potentials After Paired Magnetic Stimulation: Direct Recording of Epidural Activity in Conscious Humans. Journal of Neurophysiology, 2006, 96, 1765-1771.	1.8	181
94	Corticospinal involvement in patients with a portosystemic shunt due to liver cirrhosis. Journal of Neurology, 2006, 253, 81-85.	3.6	40
95	Cortical correlates of TMS-induced phantom hand movements revealed with concurrent TMS-fMRI. Neuropsychologia, 2006, 44, 2959-2971.	1.6	50
96	Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. Journal of Physiology, 2005, 564, 661-668.	2.9	196
97	Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. Journal of Physiology, 2005, 565, 945-950.	2.9	327
98	Bilateral Implantation in Clobus Pallidus Internus and in Subthalamic Nucleus in Parkinson's Disease. Neuromodulation, 2005, 8, 1-6.	0.8	35
99	Functional involvement of cerebral cortex in human narcolepsy. Journal of Neurology, 2005, 252, 56-61.	3.6	32
100	Short-lasting impairment of temperature perception by high frequency rTMS of the sensorimotor cortex. Clinical Neurophysiology, 2005, 116, 1072-1076.	1.5	21
101	Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus. Clinical Neurophysiology, 2005, 116, 2592-2598.	1.5	50
102	Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: A magnetoencephalographic study. NeuroImage, 2005, 28, 72-83.	4.2	69
103	Oscillatory pallidal local field potential activity inversely correlates with limb dyskinesias in Parkinson's disease. Experimental Neurology, 2005, 194, 523-529.	4.1	54
104	Normal or enhanced shortâ€latency afferent inhibition in Parkinson's disease?. Brain, 2004, 127, e8-e8.	7.6	26
105	Direct recording of the output of the motor cortex produced by transcranial magnetic stimulation in a patient with cerebral cortex atrophy. Clinical Neurophysiology, 2004, 115, 112-115.	1.5	21
106	Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease. Experimental Neurology, 2004, 188, 480-490.	4.1	233
107	The physiological basis of transcranial motor cortex stimulation in conscious humans. Clinical Neurophysiology, 2004, 115, 255-266.	1.5	485
108	Comparison of descending volleys evoked by transcranial and epidural motor cortex stimulation in a conscious patient with bulbar pain. Clinical Neurophysiology, 2004, 115, 834-838.	1.5	41

#	Article	IF	CITATIONS
109	Motor cortex stimulation for amyotrophic lateral sclerosis. Time for a therapeutic trial?. Clinical Neurophysiology, 2004, 115, 1479-1485.	1.5	38
110	Brain sensorimotor hand area functionality in acute stroke: insights from magnetoencephalography. NeuroImage, 2004, 23, 542-550.	4.2	30
111	Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. NeuroReport, 2004, 15, 717-720.	1.2	62
112	Persistent effects of high frequency repetitive TMS on the coupling between motor areas in the human. Experimental Brain Research, 2003, 149, 107-113.	1.5	55
113	Direct demonstration of reduction of the output of the human motor cortex induced by a fatiguing muscle contraction. Experimental Brain Research, 2003, 149, 535-538.	1.5	47
114	Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease: Evidence of impaired glutamatergic neurotransmission?. Annals of Neurology, 2003, 53, 824-824.	5.3	39
115	Ketamine Increases Human Motor Cortex Excitability to Transcranial Magnetic Stimulation. Journal of Physiology, 2003, 547, 485-496.	2.9	208
116	Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain, 2003, 126, 2597-2608.	7.6	373
117	Corticospinal volleys evoked by transcranial stimulation of the brain in conscious humans. Neurological Research, 2003, 25, 143-150.	1.3	63
118	Chapter 12 Generation of I waves in the human: spinal recordings. Supplements To Clinical Neurophysiology, 2003, 56, 143-152.	2.1	9
119	Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain, 2002, 125, 1558-1569.	7.6	463
120	Movementâ€related changes in synchronization in the human basal ganglia. Brain, 2002, 125, 1235-1246.	7.6	493
121	Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clinical Neurophysiology, 2002, 113, 114-119.	1.5	58
122	The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clinical Neurophysiology, 2002, 113, 1279-1285.	1.5	102
123	Direct demonstration of long latency cortico-cortical inhibition in normal subjects and in a patient with vascular parkinsonism. Clinical Neurophysiology, 2002, 113, 1673-1679.	1.5	93
124	Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neuroscience Letters, 2002, 328, 89-92.	2.1	154
125	Pallidal activity recorded in patients with implanted electrodes predictively correlates with eventual performance in a timing task. Neuroscience Letters, 2002, 330, 188-192.	2.1	16
126	Intracortical inhibition is reduced in a patient with a lesion in the posterolateral thalamus. Movement Disorders, 2002, 17, 208-212.	3.9	16

#	Article	IF	CITATIONS
127	Direct demonstration of the effects of repetitive transcranial magnetic stimulation on the excitability of the human motor cortex. Experimental Brain Research, 2002, 144, 549-553.	1.5	98
128	Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation. Experimental Brain Research, 2002, 147, 108-113.	1.5	119
129	Functional involvement of central nervous system in acute exacerbation of chronic obstructive pulmonary disease. Journal of Neurology, 2002, 249, 1232-1236.	3.6	18
130	Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clinical Neurophysiology, 2001, 112, 1633-1641.	1.5	330
131	Dopamine Dependency of Oscillations between Subthalamic Nucleus and Pallidum in Parkinson's Disease. Journal of Neuroscience, 2001, 21, 1033-1038.	3.6	1,004
132	Intermuscular coherence in Parkinson's disease: relationship to bradykinesia. NeuroReport, 2001, 12, 2577-2581.	1.2	32
133	The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Experimental Brain Research, 2001, 138, 268-273.	1.5	211
134	Inhibition of biceps brachii muscle motor area by painful heat stimulation of the skin. Experimental Brain Research, 2001, 139, 168-172.	1.5	50
135	Comparison of descending volleys evoked by monophasic and biphasic magnetic stimulation of the motor cortex in conscious humans. Experimental Brain Research, 2001, 141, 121-127.	1.5	138
136	Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Experimental Brain Research, 2000, 135, 455-461.	1.5	339
137	Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clinical Neurophysiology, 2000, 111, 794-799.	1.5	382
138	Cerebral blood flow and metabolic changes produced by repetitive magnetic brain stimulation. Journal of Neurology, 1999, 246, 1164-1168.	3.6	40
139	Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 1999, 124, 520-524.	1.5	248
140	Effects of voluntary contraction on descending volleys evoked by transcranial electrical stimulation over the motor cortex hand area in conscious humans. Experimental Brain Research, 1999, 124, 525-528.	1.5	63
141	Human handedness and asymmetry of the motor cortical silent period. Experimental Brain Research, 1999, 128, 390-396.	1.5	94
142	Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Experimental Brain Research, 1999, 129, 0494-0499.	1.5	138
143	The diagnostic value of motor evoked potentials. Clinical Neurophysiology, 1999, 110, 1297-1307.	1.5	128
144	Inhibition of the human primary motor area by painful heat stimulation of the skin. Clinical Neurophysiology, 1999, 110, 1475-1480.	1.5	110

#	Article	IF	CITATIONS
145	Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Experimental Brain Research, 1998, 119, 265-268.	1.5	562
146	Occurrence of thyroid autoimmunity and dysfunction throughout a nine-month follow-up in patients undergoing interferon-β therapy for multiple sclerosis. Journal of Endocrinological Investigation, 1998, 21, 748-752.	3.3	63