Victor I Kleshch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/130380/publications.pdf

Version: 2024-02-01

44 papers

533 citations

623734 14 h-index 677142 22 g-index

44 all docs

44 docs citations

44 times ranked 547 citing authors

#	Article	IF	CITATIONS
1	A novel method for metal oxide nanowire synthesis. Nanotechnology, 2009, 20, 165603.	2.6	110
2	Edge field emission of large-area single layer graphene. Applied Surface Science, 2015, 357, 1967-1974.	6.1	41
3	Single Crystal Diamond Needle as Point Electron Source. Scientific Reports, 2016, 6, 35260.	3.3	32
4	A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source. Beilstein Journal of Nanotechnology, 2013, 4, 493-500.	2.8	23
5	Cold and Laser Stimulated Electron Emission from Nanocarbons. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 207-219.	0.5	23
6	Field emission spectroscopy evidence for dual-barrier electron tunnelling in nanographite. Applied Physics Letters, 2015, 106, .	3.3	18
7	A Comparative Study of Field Emission From Semiconducting and Metallic Singleâ€Walled Carbon Nanotube Planar Emitters. Physica Status Solidi (B): Basic Research, 2018, 255, 1700268.	1.5	17
8	Electromechanical self-oscillations of carbon nanotube field emitter. Carbon, 2010, 48, 3895-3900.	10.3	16
9	Surface structure and field emission properties of fewâ€layer graphene flakes. Physica Status Solidi (B): Basic Research, 2011, 248, 2623-2626.	1.5	16
10	Field Emission Properties of Metal Oxide Nanowires. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 35-40.	0.5	16
11	A comparative study of field emission from NanoBuds, nanographite and pure or N-doped single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 3051-3054.	1.5	15
12	Effect of vacuum level on field emission from nanographite films. Technical Physics, 2012, 57, 1003-1007.	0.7	15
13	Nano-graphite cold cathodes for electric solar wind sail. Carbon, 2015, 81, 132-136.	10.3	15
14	Photoinduced effects in field electron emission from diamond needles. Applied Physics Letters, 2017, 110, .	3.3	14
15	Photoassisted and multiphoton emission from single-crystal diamond needles. Nanoscale, 2019, 11, 6852-6858.	5.6	14
16	Modeling of Field Emission from Nano Carbons. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 384-388.	2.1	13
17	Carbon single-electron point source controlled by Coulomb blockade. Carbon, 2021, 171, 154-160.	10.3	13
18	Scanning Anode Field Emission Microscopy of Nanocarbons. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 114-118.	0.5	12

#	Article	IF	Citations
19	Field Electron Emission From CVD Nanocarbon Films Containing Scrolled Graphene Structures. Physica Status Solidi (B): Basic Research, 2018, 255, 1700270.	1.5	11
20	Single-Crystal Diamond Needle Fabrication Using Hot-Filament Chemical Vapor Deposition. Materials, 2021, 14, 2320.	2.9	11
21	Coulomb blockade and quantum confinement in field electron emission from heterostructured nanotips. Physical Review B, 2020, 102, .	3.2	11
22	Selfâ€oscillations of carbon nanotube twistâ€yarn during field emission. Physica Status Solidi (B): Basic Research, 2009, 246, 2658-2661.	1.5	8
23	Self-oscillations in an electromechanical system with a field emitter. JETP Letters, 2009, 90, 464-468.	1.4	7
24	Conduction mechanisms and voltage drop during field electron emission from diamond needles. Ultramicroscopy, 2019, 202, 51-56.	1.9	7
25	Surface graphitization of diamond nanotips induced by field-emission current. Applied Physics Letters, 2022, 120, .	3.3	6
26	Fluid modeling for plasma-enhanced direct current chemical vapor deposition. Journal of Nanophotonics, 2015, 10, 012503.	1.0	5
27	Field emission from single-walled carbon nanotubes modified by annealing and CuCl doping. Applied Physics Letters, 2016, 109, .	3.3	5
28	Effect of laser illumination on the electrical conductivity of single-crystal diamond needles. Journal of Applied Physics, 2019, 126, 045710.	2.5	5
29	Coulomb blockade in field electron emission from carbon nanotubes. Applied Physics Letters, 2021, 118,	3.3	5
30	A Comparative Study of Field Emission From Pristine, Ionâ€Treated and Tungsten Nanoparticleâ€Decorated pâ€Type Silicon Tips. Physica Status Solidi (B): Basic Research, 2019, 256, 1800646.	1.5	4
31	Atomic layer deposition of TiO ₂ and Al ₂ O ₃ on nanographite films: structure and field emission properties. Journal of Nanophotonics, 2015, 10, 012509.	1.0	3
32	Detonation Nanodiamondâ€Assisted Carbon Nanotube Growth by Hot Filament Chemical Vapor Deposition. Physica Status Solidi (B): Basic Research, 2018, 255, 1700286.	1.5	3
33	Field emission microscopy pattern of a single-crystal diamond needle under ultrafast laser illumination. New Journal of Physics, 2019, 21, 113060.	2.9	3
34	Effect of Residual Gas Pressure on Field Electron Emission from Nanographite Films. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 41-45.	0.5	3
35	Thermionic field electron emission from graphiteâ€based nanomaterials. Physica Status Solidi (B): Basic Research, 2011, 248, 2712-2715.	1.5	2
36	CVD nanographite films covered by ALD metal oxides: structural and field emission properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1022-1027.	0.8	2

#	Article	IF	CITATIONS
37	Production and potential applications of needle-like diamonds. Materials Today: Proceedings, 2018, 5, 26146-26152.	1.8	2
38	Field Emission Properties of Single-Walled Carbon Nanotube Films. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 71-74.	0.5	2
39	Nano-graphite field-emission cathode for space electric propulsion systems. Nanotechnology, 2022, 33, 415201.	2.6	2
40	Field emission from single-wall nanotubes obtained from carbon and boron nitride mixtures. Physica Status Solidi (B): Basic Research, 2008, 245, 1990-1993.	1.5	1
41	Homogeneous low-voltage field emission from nanographite films for cold cathode applications. , 2014, , .		1
42	Coulomb blockade modulated current-voltage characteristic of a diamond field emitter. , 2016, , .		1
43	Field emission properties of p-type silicon tips decorated with tungsten nanoparticles. , 2017, , .		O
44	Combined effect of single-electron charging and quantum confinement on field electron emission from heterostructured nanotips. , 2021, , .		O