Arkadiusz Józefczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1303654/publications.pdf

Version: 2024-02-01

394421 526287 1,024 71 19 citations h-index papers

g-index 72 72 72 1028 docs citations times ranked citing authors all docs

27

#	Article	IF	CITATIONS
1	Propagation of ultrasonic wave in magnetic Pickering emulsion under DC magnetic field. Journal of Magnetism and Magnetic Materials, 2022, 542, 168590.	2.3	5
2	The impact of ultrasound on Janus capsules at gel-liquid interface. Current Applied Physics, 2022, 38, 22-29.	2.4	4
3	Ultrasound Study of Magnetic and Non-Magnetic Nanoparticle Agglomeration in High Viscous Media. Materials, 2022, 15, 3450.	2.9	3
4	Ultrasound transmission tomography-guided heating with nanoparticles. Measurement: Journal of the International Measurement Confederation, 2022, 197, 111345.	5.0	2
5	Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres. Materials Science and Engineering C, 2021, 120, 111654.	7.3	17
6	Monitoring of Pickering emulsion stability during magnetic heating using ultrasound measurements. Measurement: Journal of the International Measurement Confederation, 2021, 178, 109431.	5.0	8
7	Ultrasound-triggered directional release from turmeric capsules. Particuology, 2021, 57, 19-27.	3.6	7
8	Magnetic mediators for ultrasound theranostics. Theranostics, 2021, 11, 10091-10113.	10.0	7
9	Ultrasound control of oil-in-oil Pickering emulsions preparation. Journal Physics D: Applied Physics, 2020, 53, 085301.	2.8	9
10	Sono-magnetic heating in tumor phantom. Journal of Magnetism and Magnetic Materials, 2020, 500, 166396.	2.3	15
11	The effect of magnetic particles covering the droplets on the heating rate of Pickering emulsions in the AC magnetic field. Journal of Molecular Liquids, 2020, 320, 114388.	4.9	15
12	Magnetic hyperthermia study of magnetosome chain systems in tissue-mimicking phantom. Journal of Molecular Liquids, 2020, 320, 114470.	4.9	13
13	The Effect of Particle Shell on Cooling Rates in Oil-in-Oil Magnetic Pickering Emulsions. Materials, 2020, 13, 4783.	2.9	9
14	Direction-Specific Release from Capsules with Homogeneous or Janus Shells Using an Ultrasound Approach. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15810-15822.	8.0	13
15	The influence of initial temperature on ultrasonic hyperthermia measurements. Applied Acoustics, 2020, 164, 107259.	3.3	4
16	The potential of magnetic heating for fabricating Pickering-emulsion-based capsules. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111070.	5.0	9
17	Comparison of Magnetic and Non-Magnetic Nanoparticles as Sonosensitizers in Ultrasonic Hyperthermia. Acta Physica Polonica A, 2020, 137, 653-656.	0.5	2
18	The Effect of Tissue-Mimicking Phantom Compressibility on Magnetic Hyperthermia. Nanomaterials, 2019, 9, 803.	4.1	28

#	Article	IF	CITATIONS
19	Magneto-ultrasonic heating with nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 474, 400-405.	2.3	20
20	Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11554-11564.	8.0	37
21	Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials, 2018, 11, 1607.	2.9	26
22	Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields. Soft Matter, 2018, 14, 5140-5149.	2.7	40
23	Dependence of Ultrasonic and Magnetic Hyperthermia on the Concentration of Magnetic Nanoparticles. Acta Physica Polonica A, 2018, 133, 716-718.	0.5	12
24	Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis. Nature Communications, 2017, 8, 15255.	12.8	33
25	Structure characterization of the magnetosome solutions for hyperthermia study. Journal of Molecular Liquids, 2017, 235, 11-16.	4.9	13
26	The effect of magnetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms. Journal of Magnetism and Magnetic Materials, 2017, 431, 172-175.	2.3	27
27	Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia. Applied Physics Letters, 2016, 108, 263701.	3.3	41
28	Patchy colloidosomes – an emerging class of structures. European Physical Journal: Special Topics, 2016, 225, 741-756.	2.6	19
29	A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 2016, 407, 92-100.	2.3	24
30	The Effect of Sonication on Acoustic Properties of Biogenic Ferroparticle Suspension. Archives of Acoustics, 2016, 41, 161-168.	0.8	0
31	Uses and limitation of different thermometers for measuring heating efficiency of magnetic fluids. Applied Thermal Engineering, 2016, 100, 1308-1318.	6.0	22
32	Ultrasonic Studies of Emulsion Stability in the Presence of Magnetic Nanoparticles. Advances in Condensed Matter Physics, 2015, 2015, 1-9.	1.1	16
33	The effect of particle aggregate shape on ultrasonic anisotropy in concentrated magnetic fluids. Journal Physics D: Applied Physics, 2015, 48, 175303.	2.8	12
34	Properties of Magnetosome Suspension under the Influence of Magnetic Field. Acta Physica Polonica A, 2015, 127, 629-631.	0.5	4
35	Viscosity Dependence of a Magnetic Fluid Nanoparticles Concentration. Acta Physica Polonica A, 2014, 126, 278-279.	0.5	8
36	Acoustic wave in a suspension of magnetic nanoparticle with sodium oleate coating. Journal of Nanoparticle Research, 2014, 16, 2271.	1.9	15

#	Article	IF	CITATIONS
37	Rheological Study of Dextran-Modified Magnetite Nanoparticle Water Suspension. International Journal of Thermophysics, 2013, 34, 609-619.	2.1	10
38	Hyperthermic Effect in Suspension of Magnetosomes Prepared by Various Methods. IEEE Transactions on Magnetics, 2013, 49, 250-254.	2.1	39
39	Ultrasonic Properties of Magnetic Nanoparticles with an Additional Biocompatible Dextrane Layer. Archives of Acoustics, 2013, 38, 93-98.	0.8	10
40	Investigation of Ultrasonic Emulsifying Processes of a Linseed Oil and Water Mixture. Archives of Acoustics, 2013, 38, 297-301.	0.8	5
41	Elastic properties of bacterial magnetite nanoparticles suspension. Magnetohydrodynamics, 2013, 49, 411-415.	0.3	3
42	Chronicle. 59th Open Seminar on Acoustics Boszkowo, Poland, September 10–14, 2012. Archives of Acoustics, 2012, 37, 373-393.	0.8	0
43	Effect of the Molecular Weight of Poly(ethylene glycol) on the Properties of Biocompatible Magnetic Fluids. International Journal of Thermophysics, 2012, 33, 640-652.	2.1	14
44	Structuring from nanoparticles in oil-based ferrofluids. European Physical Journal E, 2011, 34, 28.	1.6	48
45	Heating Characteristics of Transformer Oil-Based Magnetic Fluids of Different Magnetic Particle Concentrations. International Journal of Thermophysics, 2011, 32, 876-885.	2.1	14
46	Temperature Dependence of Particle Size Distribution in Transformer Oil-Based Ferrofluid. International Journal of Thermophysics, 2011, 32, 795-806.	2.1	24
47	Ultrasonic investigation of magnetic nanoparticles suspension with PEG biocompatible coating. Journal of Magnetism and Magnetic Materials, 2011, 323, 1509-1516.	2.3	29
48	Effect of Poly(Ethylene Glycol) Coating on the Acoustic Properties of Biocompatible Magnetic Fluid. International Journal of Thermophysics, 2010, 31, 70-76.	2.1	3
49	Investigation of magnetic and hyperthermic effects in ferrofluids with PEG biocompatible surfactant. Journal of Physics: Conference Series, 2009, 149, 012111.	0.4	5
50	Study of low concentrated ionic ferrrofluid stability in magnetic field by ultrasound spectroscopy. Journal of Magnetism and Magnetic Materials, 2009, 321, 2225-2231.	2.3	18
51	Effect of poly (ethylene glycol) coating on the magnetic and thermal properties of biocompatible magnetic liquids. Journal of Magnetism and Magnetic Materials, 2009, 321, 1505-1508.	2.3	19
52	Magnetic properties and heating effect in bacterial magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321, 1521-1524.	2.3	48
53	Ultrasonic determination of the particle size distribution in water-based magnetic liquid. Ultrasonics, 2008, 48, 594-597.	3.9	14
54	Contribution of hysteresis loss to the hyperthermal effect in the cobalt magnetic fluid. Magnetohydrodynamics, 2008, 44, 191-200.	0.3	3

#	Article	IF	CITATIONS
55	Study of heating effect and acoustic properties of dextran stabilized magnetic fluid. Journal of Magnetism and Magnetic Materials, 2007, 311, 193-196.	2.3	23
56	Heating Effect in Biocompatible Magnetic Fluid. International Journal of Thermophysics, 2007, 28, 1461-1469.	2.1	19
57	Field-induced aggregates in a bilayer ferrofluid characterized by ultrasound spectroscopy. Journal of Physics Condensed Matter, 2006, 18, 1869-1876.	1.8	14
58	Acoustic properties of PEG biocompatible magnetic fluid under perpendicular magnetic field. Journal of Magnetism and Magnetic Materials, 2005, 293, 240-244.	2.3	12
59	Effects of biocompatible coating of nanoparticles on acoustics property of the magnetic fluid. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 265-268.	2.3	11
60	Ultrasonic study of the effect of time of the ferrofluid exposure to magnetic field on its structure. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1691-E1692.	2.3	2
61	Acoustic and Magnetic Properties of a Dense Commercial Magnetic Fluid. European Physical Journal D, 2004, 54, 647-650.	0.4	2
62	The Effect of a Magnetic Field on the Absorption Coefficient of Ultrasonic Wave in Biocompatible Ferrofluid. European Physical Journal D, 2004, 54, 651-654.	0.4	1
63	Effects of the sweep rate of the magnetic field on the changes of ultrasonic wave velocity in magnetic fluid. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 474-476.	2.3	3
64	The time dependence of the changes of ultrasonic wave velocity in ferrofluid under parallel magnetic field. Journal of Magnetism and Magnetic Materials, 2003, 256, 267-270.	2.3	19
65	The influence of the concentration of ferroparticles in a ferrofluid on its magnetic and acoustic properties. Journal Physics D: Applied Physics, 2003, 36, 3120-3124.	2.8	23
66	The comparative study of particle size distribution in magnetic fluids. European Physical Journal D, 2002, 52, A281-A284.	0.4	3
67	Hysteresis of changes of ultrasonic wave absorption coefficient in a magnetic fluid caused by the magnetic field. Journal of Magnetism and Magnetic Materials, 2002, 252, 356-359.	2.3	17
68	Application of the ultrasonic waves in structural investigation of ferrofluid. Ultrasonics, 2002, 40, 337-339.	3.9	3
69	The measurements of anisotropy of ultrasound propagation and magnetic susceptibility in viscous ferrofluid. Ultrasonics, 2002, 40, 341-344.	3.9	6
70	The effect of the rate of magnetic field and temperature changes on the ultrasonic wave absorption coefficient in a magnetic fluid. Ultrasonics, 2000, 38, 868-871.	3.9	3
71	Investigation of magnetic fluids by ultrasonic and magnetic methods. Ultrasonics, 2000, 38, 864-867.	3.9	18