
Magnolia Vanegas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1303522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnostic Potential of the Serological Response to Synthetic Peptides from Mycobacterium tuberculosis Antigens for Discrimination Between Active and Latent Tuberculosis Infections. International Journal of Peptide Research and Therapeutics, 2022, 28, 98.	0.9	2
2	ESAT-6 and Ag85A Synthetic Peptides as Candidates for an Immunodiagnostic Test in Children with a Clinical Suspicion of Tuberculosis. Disease Markers, 2021, 2021, 1-9.	0.6	1
3	p―Methoxyphenol: A potent and effective scavenger for solidâ€phase peptide synthesis. Journal of Peptide Science, 2020, 26, e3251.	0.8	1
4	Preliminary Evaluation of the Safety and Immunogenicity of an Antimalarial Vaccine Candidate Modified Peptide (IMPIPS) Mixture in a Murine Model. Journal of Immunology Research, 2019, 2019, 1-12.	0.9	2
5	Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorganic and Medicinal Chemistry, 2018, 26, 2401-2409.	1.4	13
6	Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules, 2018, 23, 526.	1.7	5
7	Specific β-Turns Precede PPIIL Structures Binding to Allele-Specific HLA-DRβ1* PBRs in Fully-Protective Malaria Vaccine Components. Frontiers in Chemistry, 2018, 6, 106.	1.8	3
8	A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria. Molecules, 2017, 22, 1837.	1.7	4
9	Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules, 2017, 22, 2199.	1.7	9
10	IMPIPS: The Immune Protection-Inducing Protein Structure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PLoS ONE, 2015, 10, e0123249.	1.1	25
11	Using the PfEMP1 Head Structure Binding Motif to Deal a Blow at Severe Malaria. PLoS ONE, 2014, 9, e88420.	1.1	8
12	Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides, 2014, 53, 210-217.	1.2	9
13	Specific Interaction between <i><scp>M</scp>ycobacterium tuberculosis</i> Lipoproteinâ€derived Peptides and Target Cells Inhibits Mycobacterial Entry <i>In Vitro</i> . Chemical Biology and Drug Design, 2014, 84, 626-641.	1.5	16
14	Protecting capacity against malaria of chemically defined tetramer forms based on the Plasmodium falciparum apical sushi protein as potential vaccine components. Biochemical and Biophysical Research Communications, 2014, 451, 15-23.	1.0	5
15	Functional, biochemical and 3D studies of <i>Mycobacterium tuberculosis</i> protein peptides for an effective anti-tuberculosis vaccine. Critical Reviews in Microbiology, 2014, 40, 117-145.	2.7	14
16	Immunologic evaluation and validation of methods using synthetic peptides derived from Mycobacterium tuberculosis for the diagnosis of tuberculosis infection. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 131-139.	0.8	11
17	The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Engineering, Design and Selection, 2012, 25, 235-242.	1.0	8
18	Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides, 2012, 38, 208-216.	1.2	9

MAGNOLIA VANEGAS

#	Article	IF	CITATIONS
19	Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids, 2012, 42, 2067-2077.	1.2	12
20	Decreasing the configurational entropy and the hydrophobicity of EBV-derived peptide 11389 increased its antigenicity, immunogenicity and its ability of inducing IL-6. Amino Acids, 2012, 42, 2165-2175.	1.2	1
21	Binding activity, structure, and immunogenicity of synthetic peptides derived from Plasmodium falciparum CelTOS and TRSP proteins. Amino Acids, 2012, 43, 365-378.	1.2	7
22	Functional, Immunological and Three-Dimensional Analysis of Chemically Synthesised Sporozoite Peptides as Components of a Fully-Effective Antimalarial Vaccine. Current Medicinal Chemistry, 2011, 18, 4470-4502.	1.2	25
23	α-Helix peptides designed from EBV-gH protein display higher antigenicity and induction of monocyte apoptosis than the native peptide. Amino Acids, 2010, 39, 1507-1519.	1.2	0
24	Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: Potential TB vaccine candidate antigen. BMC Microbiology, 2010, 10, 109.	1.3	22
25	Conserved regions from <i>Plasmodium falciparum</i> MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells. Journal of Cellular Biochemistry, 2010, 110, 882-892.	1.2	2
26	Evaluation of the antigenicity of universal epitopes from PvDBPII in individuals exposed to Plasmodium vivax malaria. Microbes and Infection, 2010, 12, 1188-1197.	1.0	5
27	Computational Prediction and Experimental Assessment of Secreted/Surface Proteins from Mycobacterium tuberculosis H37Rv. PLoS Computational Biology, 2010, 6, e1000824.	1.5	45
28	Well-Defined Regions of the <i>Plasmodium falciparum</i> Reticulocyte Binding Protein Homologue 4 Mediate Interaction with Red Blood Cell Membrane. Journal of Medicinal Chemistry, 2010, 53, 811-821.	2.9	7
29	Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria. Biochemical and Biophysical Research Communications, 2010, 394, 529-535.	1.0	17
30	Conserved high activity binding peptides from the Plasmodium falciparum Pf34 rhoptry protein inhibit merozoites in vitro invasion of red blood cells. Peptides, 2010, 31, 1987-1994.	1.2	13
31	Conserved regions of the Plasmodium falciparum rhoptry-associated protein 3 mediate specific host-pathogen interactions during invasion of red blood cells. Peptides, 2010, 31, 2165-2172.	1.2	4
32	Sequences of the Plasmodium falciparum cytoadherence-linked asexual protein 9 implicated in malaria parasite invasion to erythrocytes. Vaccine, 2010, 28, 2653-2663.	1.7	7
33	3D structure determination of STARP peptides implicated in P. falciparum invasion of hepatic cells. Vaccine, 2010, 28, 4989-4996.	1.7	8
34	Conserved High Activity Binding Peptides are Involved in Adhesion of Two Detergent-Resistant Membrane-Associated Merozoite Proteins to Red Blood Cells during Invasion. Journal of Medicinal Chemistry, 2010, 53, 3907-3918.	2.9	12
35	Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malaria Journal, 2010, 9, 283.	0.8	14
36	Structural characteristics of immunogenic liver-stage antigens derived from P. falciparum malarial proteins. Biochemical and Biophysical Research Communications, 2009, 384, 455-460.	1.0	9

MAGNOLIA VANEGAS

#	Article	IF	CITATIONS
37	Identification of conserved erythrocyte binding regions in members of the Plasmodium falciparum Cys6 lipid raft-associated protein family. Vaccine, 2009, 27, 3953-3962.	1.7	28
38	A Maurer's cleft-associated Plasmodium falciparum membrane-associated histidine-rich protein peptide specifically interacts with the erythrocyte membrane. Biochemical and Biophysical Research Communications, 2009, 380, 122-126.	1.0	6
39	Characterizing the <i>Mycobacterium tuberculosis</i> Rv2707 protein and determining its sequences which specifically bind to two human cell lines. Protein Science, 2008, 17, 342-351.	3.1	14
40	Characterization of <i>Plasmodium falciparum</i> integral membrane protein Pf25â€IMP and identification of its red blood cell binding sequences inhibiting merozoite invasion in vitro. Protein Science, 2008, 17, 1494-1504.	3.1	16
41	Studies of Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) protein peptides specifically binding to human RBC. Vaccine, 2008, 26, 853-862.	1.7	17
42	Structural and immunological analysis of circumsporozoite protein peptides: A further step in the identification of potential components of a minimal subunit-based, chemically synthesised antimalarial vaccine. Vaccine, 2008, 26, 6908-6918.	1.7	19
43	Identification of peptides with high red blood cell and hepatocyte binding activity in the Plasmodium falciparum multi-stage invasion proteins: PfSPATR and MCP-1. Biochimie, 2008, 90, 1750-1759.	1.3	7
44	Characterisation of the Plasmodium vivax Pv38 antigen. Biochemical and Biophysical Research Communications, 2008, 376, 326-330.	1.0	22
45	The Plasmodium vivax Pv41 surface protein: Identification and characterization. Biochemical and Biophysical Research Communications, 2008, 377, 1113-1117.	1.0	20
46	A non-variable L1-peptide displays high sensitivity and specificity for detecting women having human papillomavirus-associated cervical lesions. Peptides, 2008, 29, 957-962.	1.2	1
47	Synthetic vaccine update: Applying lessons learned from recent SPf66 malarial vaccine physicochemical, structural and immunological characterization. Vaccine, 2007, 25, 4487-4501.	1.7	15
48	Monosaccharides modulate HCV E2 protein-derived peptide biological properties. Biochemical and Biophysical Research Communications, 2007, 355, 409-418.	1.0	5
49	Mycobacterium tuberculosisRv2536 protein implicated in specific binding to human cell lines. Protein Science, 2005, 14, 2236-2245.	3.1	17
50	Elongating modified conserved peptides eliminates their immunogenicity and protective efficacy against P. falciparum malaria. Journal of Structural Biology, 2005, 150, 245-258.	1.3	2
51	Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochemical and Biophysical Research Communications, 2005, 332, 771-781.	1.0	18
52	Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells. Peptides, 2005, 26, 1133-1143.	1.2	18
53	Evidence supporting the hypothesis that specifically modifying a malaria peptide to fit into HLA-DRβ1*03 molecules induces antibody production and protection. Vaccine, 2005, 23, 1579-1587.	1.7	10
54	Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Science, 2005, 14, 464-473.	3.1	14

MAGNOLIA VANEGAS

#	Article	IF	CITATIONS
55	Orientating Peptide Residues and Increasing the Distance between Pockets to Enable Fitting into MHCâ°'TCR Complex Determine Protection against Malaria. Biochemistry, 2004, 43, 6545-6553.	1.2	17
56	Induction and displacement of an α helix in the 6725 SERA peptide analogue confers protection against P. falciparum malaria. Vaccine, 2004, 22, 1281-1289.	1.7	9
57	Modified merozoite surface protein-1 peptides with short alpha helical regions are associated with inducing protection against malaria. FEBS Journal, 2003, 270, 3946-3952.	0.2	28
58	MSP-1 Malaria Pseudopeptide Analogs: Biological and Immunological Significance and Three-Dimensional Structure. Biological Chemistry, 2003, 384, 71-82.	1.2	12
59	P. falciparum: merozoite surface protein-8 peptides bind specifically to human erythrocytes. Peptides, 2003, 24, 1015-1023.	1.2	21
60	Splenectomised and spleen intact Aotus monkeys? immune response to Plasmodium vivax MSP-1 protein fragments and their high activity binding peptides. Vaccine, 2003, 21, 4133-4144.	1.7	30
61	Proteolytic processing of the Cyt1Ab1 toxin produced by Bacillus thuringiensis subsp. medellin. Memorias Do Instituto Oswaldo Cruz, 2000, 95, 693-700.	0.8	Ο
62	Serine repeat antigen peptides which bind specifically to red blood cells. Parasitology International, 2000, 49, 105-117.	0.6	35