List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1303036/publications.pdf Version: 2024-02-01

IFFEDEV M ROVD

#	Article	IF	CITATIONS
1	<i>Staphylococcus aureus</i> lacking a functional MntABC manganese import system has increased resistance to copper. Molecular Microbiology, 2021, 115, 554-573.	2.5	20
2	Genetic Approaches to Uncover Gene Products Involved in Iron-Sulfur Protein Maturation: High-Throughput Genomic Screening Using Transposon Sequencing. Methods in Molecular Biology, 2021, 2353, 51-68.	0.9	0
3	Impact of FtsZ Inhibition on the Localization of the Penicillin Binding Proteins in Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2021, 203, e0020421.	2.2	12
4	Growth and Stress Tolerance Comprise Independent Metabolic Strategies Critical for Staphylococcus aureus Infection. MBio, 2021, 12, e0081421.	4.1	11
5	Bacterial approaches to sensing and responding to respiration and respiration metabolites. Molecular Microbiology, 2021, 116, 1009-1021.	2.5	4
6	Tools, Strains, and Strategies To Effectively Conduct Anaerobic and Aerobic Transcriptional Reporter Screens and Assays in Staphylococcus aureus. Applied and Environmental Microbiology, 2021, 87, e0110821.	3.1	2
7	Bayesian Modeling and Intrabacterial Drug Metabolism Applied to Drug-Resistant <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2021, 7, 2508-2521.	3.8	8
8	Bacterial Approaches for Assembling Iron-Sulfur Proteins. MBio, 2021, 12, e0242521.	4.1	31
9	Cetylpyridinium Trichlorostannate: Synthesis, Antimicrobial Properties, and Controlled-Release Properties via Electrical Resistance Tomography. ACS Omega, 2021, 6, 35433-35441.	3.5	5
10	A Small-Molecule Modulator of Metal Homeostasis in Gram-Positive Pathogens. MBio, 2020, 11, .	4.1	8
11	Synthesis, Characterization, and Antimicrobial Investigation of a Novel Chlorhexidine Cyclamate Complex. Crystal Growth and Design, 2020, 20, 4991-4999.	3.0	6
12	Metabolic control of virulence factor production in Staphylococcus aureus. Current Opinion in Microbiology, 2020, 55, 81-87.	5.1	20
13	Genetic Regulation of Metal Ion Homeostasis in Staphylococcus aureus. Trends in Microbiology, 2020, 28, 821-831.	7.7	22
14	Expression and regulation of the <i>mer</i> operon in <i>Thermus thermophilus</i> . Environmental Microbiology, 2020, 22, 1619-1634.	3.8	7
15	Synthesis, Characterization, and Investigation of the Antimicrobial Activity of Cetylpyridinium Tetrachlorozincate. ACS Omega, 2020, 5, 10359-10365.	3.5	11
16	The SrrAB two-component system regulates <i>Staphylococcus aureus</i> pathogenicity through redox sensitive cysteines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10989-10999.	7.1	50
17	The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner. Journal of Bacteriology, 2019, 201,	2.2	12
18	Drug-like Fragments Inhibit agr-Mediated Virulence Expression in Staphylococcus aureus. Scientific Reports, 2019, 9, 6786.	3.3	24

#	Article	IF	CITATIONS
19	Contribution of YjbIH to Virulence Factor Expression and Host Colonization in <i>Staphylococcus aureus</i> . Infection and Immunity, 2019, 87, .	2.2	19
20	<i>Propionibacterium acnes</i> susceptibility to lowâ€level 449 nm blue light photobiomodulation. Lasers in Surgery and Medicine, 2019, 51, 727-734.	2.1	14
21	Superoxide Dismutase and Pseudocatalase Increase Tolerance to Hg(II) in Thermus thermophilus HB27 by Maintaining the Reduced Bacillithiol Pool. MBio, 2019, 10, .	4.1	15
22	Structure-Guided Design of a Fluorescent Probe for the Visualization of FtsZ in Clinically Important Gram-Positive and Gram-Negative Bacterial Pathogens. Scientific Reports, 2019, 9, 20092.	3.3	22
23	The copBL operon protects Staphylococcus aureus from copper toxicity: CopL is an extracellular membrane–associated copper-binding protein. Journal of Biological Chemistry, 2019, 294, 4027-4044.	3.4	34
24	<i>Staphylococcus aureus</i> Responds to the Central Metabolite Pyruvate To Regulate Virulence. MBio, 2018, 9, .	4.1	69
25	Investigating the role(s) of SufT and the domain of unknown function 59 (DUF59) in the maturation of iron–sulfur proteins. Current Genetics, 2018, 64, 9-16.	1.7	10
26	One-Pot Hydrothermal Synthesis of Benzalkonium-Templated Mesostructured Silica Antibacterial Agents. Journal of the American Chemical Society, 2018, 140, 13534-13537.	13.7	41
27	SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus. Infection and Immunity, 2017, 85, .	2.2	48
28	The Suf Iron-Sulfur Cluster Biosynthetic System Is Essential in Staphylococcus aureus, and Decreased Suf Function Results in Global Metabolic Defects and Reduced Survival in Human Neutrophils. Infection and Immunity, 2017, 85, .	2.2	43
29	The RicAFT (YmcAâ€YlbFâ€YaaT) complex carries two [4Feâ€4S] 2+ clusters and may respond to redox changes. Molecular Microbiology, 2017, 104, 837-850.	2.5	16
30	The Staphylococcus aureus SrrAB Regulatory System Modulates Hydrogen Peroxide Resistance Factors, Which Imparts Protection to Aconitase during Aerobic Growth. PLoS ONE, 2017, 12, e0170283.	2.5	41
31	Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. ELife, 2017, 6, .	6.0	107
32	<i>Staphylococcus aureus</i> SufT: an essential ironâ€sulphur cluster assembly factor in cells experiencing a highâ€demand for lipoic acid. Molecular Microbiology, 2016, 102, 1099-1119.	2.5	27
33	A Small-Molecule Inhibitor of Iron-Sulfur Cluster Assembly Uncovers a Link between Virulence Regulation and Metabolism in Staphylococcus aureus. Cell Chemical Biology, 2016, 23, 1351-1361.	5.2	30
34	Physiological roles of bacillithiol in intracellular metal processing. Current Genetics, 2016, 62, 59-65.	1.7	28
35	The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. PLoS Genetics, 2016, 12, e1006233.	3.5	37
36	Bacillithiol has a role in <scp>F</scp> e– <scp>S</scp> cluster biogenesis in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 98, 218-242.	2.5	40

#	Article	IF	CITATIONS
37	<scp>Nfu</scp> facilitates the maturation of ironâ€sulfur proteins and participates in virulence in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 95, 383-409.	2.5	60
38	De Novo Assembly of Plasmids Using Yeast Recombinational Cloning. Methods in Molecular Biology, 2015, 1373, 33-41.	0.9	15
39	Using Natural Selection to Explore the Adaptive Potential of Chlamydomonas reinhardtii. PLoS ONE, 2014, 9, e92533.	2.5	37
40	Evolution of salt tolerance in a laboratory reared population of <scp><i>C</i></scp> <i>hlamydomonas reinhardtii</i> . Environmental Microbiology, 2014, 16, 1755-1766.	3.8	94
41	A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile. Journal of Microbiological Methods, 2014, 100, 46-51.	1.6	90
42	Phosphatidylinositol-Specific Phospholipase C Contributes to Survival of Staphylococcus aureus USA300 in Human Blood and Neutrophils. Infection and Immunity, 2014, 82, 1559-1571.	2.2	45
43	Methionine Sulfoxide Reductases Protect against Oxidative Stress in <i>Staphylococcus aureus</i> Encountering Exogenous Oxidants and Human Neutrophils. Journal of Innate Immunity, 2014, 6, 353-364.	3.8	42
44	Transcriptional Profiling of Staphylococcus aureus During Growth in 2ÂM NaCl Leads to Clarification of Physiological Roles for Kdp and Ktr K ⁺ Uptake Systems. MBio, 2013, 4, .	4.1	78
45	The Staphylococcus aureus ArlRS Two-Component System Is a Novel Regulator of Agglutination and Pathogenesis. PLoS Pathogens, 2013, 9, e1003819.	4.7	78
46	Decreased Transport Restores Growth of a Salmonella enterica <i>apbC</i> Mutant on Tricarballylate. Journal of Bacteriology, 2012, 194, 576-583.	2.2	10
47	Mechanism of Inhibition of Aliphatic Epoxide Carboxylation by the Coenzyme M Analog 2-Bromoethanesulfonate. Journal of Biological Chemistry, 2010, 285, 25232-25242.	3.4	10
48	Archaeal ApbC/Nbp35 Homologs Function as Iron-Sulfur Cluster Carrier Proteins. Journal of Bacteriology, 2009, 191, 1490-1497.	2.2	52
49	Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function. Journal of Biological Chemistry, 2009, 284, 110-118.	3.4	31
50	Involvement of the Cra Global Regulatory Protein in the Expression of the iscRSUA Operon, Revealed during Studies of Tricarballylate Catabolism in Salmonella enterica. Journal of Bacteriology, 2009, 191, 2069-2076.	2.2	3
51	Bacterial ApbC Can Bind and Effectively Transfer Ironâ^'Sulfur Clusters. Biochemistry, 2008, 47, 8195-8202.	2.5	52
52	<i>Salmonella enterica</i> Requires ApbC Function for Growth on Tricarballylate: Evidence of Functional Redundancy between ApbC and IscU. Journal of Bacteriology, 2008, 190, 4596-4602.	2.2	29
53	Characterization of 2-Bromoethanesulfonate as a Selective Inhibitor of the Coenzyme M-Dependent Pathway and Enzymes of Bacterial Aliphatic Epoxide Metabolism. Journal of Bacteriology, 2006, 188, 8062-8069.	2.2	12
54	Inhibition of Fructose-1,6-bisphosphatase by Aminoimidazole Carboxamide Ribotide Prevents Growth of Salmonella enterica purH Mutants on Glycerol. Journal of Biological Chemistry, 2006, 281, 33892-33899.	3.4	19

#	Article	IF	CITATIONS
55	ATP-Dependent Enolization of Acetone by Acetone Carboxylase from Rhodobacter capsulatus. Biochemistry, 2005, 44, 8543-8553.	2.5	23
56	Evidence for a Metalâ^'Thiolate Intermediate in Alkyl Group Transfer from Epoxypropane to Coenzyme M and Cooperative Metal Ion Binding in Epoxyalkane:CoM Transferase. Biochemistry, 2005, 44, 13151-13162.	2.5	11
57	Bacterial Acetone Carboxylase Is a Manganese-dependent Metalloenzyme. Journal of Biological Chemistry, 2004, 279, 46644-46651.	3.4	35
58	Crystallization and preliminary X-ray analysis of an acetone carboxylase fromXanthobacter autotrophicusstrain Py2. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 385-387.	2.5	6
59	The Stereoselectivity and Catalytic Properties ofXanthobacter autotrophicus2-[(R)-2-Hydroxypropylthio]ethanesulfonate Dehydrogenase Are Controlled by Interactions between C-Terminal Arginine Residues and the Sulfonate of Coenzyme Mâ€. Biochemistry, 2004. 43. 6763-6771.	2.5	12
60	The Membrane-Associated Methane Monooxygenase (pMMO) and pMMO-NADH:Quinone Oxidoreductase Complex from Methylococcus capsulatus Bath. Journal of Bacteriology, 2003, 185, 5755-5764.	2.2	196
61	Membrane-Associated Quinoprotein Formaldehyde Dehydrogenase from Methylococcus capsulatus Bath, Journal of Bacteriology, 2001, 183, 6832-6840.	2.2	59