
Rumela Chakrabarti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of Breast Cancer Stem Cell Activity Using a Spheroid Formation Assay. Methods in Molecular Biology, 2022, 2429, 485-500.	0.9	4
2	Estrogen Receptor Î ² -Mediated Inhibition of Actin-Based Cell Migration Suppresses Metastasis of Inflammatory Breast Cancer. Cancer Research, 2021, 81, 2399-2414.	0.9	7
3	Dll1+ quiescent tumor stem cells drive chemoresistance in breast cancer through NF-κB survival pathway. Nature Communications, 2021, 12, 432.	12.8	38
4	Modeling molecular development of breast cancer in canine mammary tumors. Genome Research, 2021, 31, 337-347.	5.5	12
5	Inducible knockout of â^†Np63 alters cell polarity and metabolism during pubertal mammary gland development. FEBS Letters, 2020, 594, 973-985.	2.8	7
6	The many facets of Notch signaling in breast cancer: toward overcoming therapeutic resistance. Genes and Development, 2020, 34, 1422-1438.	5.9	28
7	Loss of ELF5–FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nature Cell Biology, 2020, 22, 591-602.	10.3	67
8	Consequences of EMT-Driven Changes in the Immune Microenvironment of Breast Cancer and Therapeutic Response of Cancer Cells. Journal of Clinical Medicine, 2019, 8, 642.	2.4	47
9	A new Elf5 ^{Cre} <scp>^{ERT}</scp> ^{2â€} <scp>^{CFP} BAC</scp> transgenic mouse model for tracing Elf5 cell lineages in adult tissues. FEBS Letters, 2019, 593, 1030-1039.	2.8	4
10	Estrogen-dependent DLL1-mediated Notch signaling promotes luminal breast cancer. Oncogene, 2019, 38, 2092-2107.	5.9	66
11	Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1060-1071.	3.8	57
12	Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science, 2018, 360, .	12.6	144
13	ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. Journal of Clinical Investigation, 2018, 128, 5095-5109.	8.2	102
14	Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a–LCOR axis. Nature Cell Biology, 2017, 19, 711-723.	10.3	83
15	Transplantable Mouse Tumor Models of Breast Cancer Metastasis. Methods in Molecular Biology, 2015, 1267, 367-380.	0.9	16
16	Sirtuin 4 ls a Lipoamidase Regulating Pyruvate Dehydrogenase Complex Activity. Cell, 2014, 159, 1615-1625.	28.9	356
17	MTDH-SND1 Interaction Is Crucial for Expansion and Activity of Tumor-Initiating Cells in Diverse Oncogene- and Carcinogen-Induced Mammary Tumors. Cancer Cell, 2014, 26, 92-105.	16.8	106
18	ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nature Cell Biology, 2014, 16, 1004-1015.	10.3	176

#	Article	IF	CITATIONS
19	Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nature Cell Biology, 2012, 14, 1212-1222.	10.3	251
20	Elf5 Regulates Mammary Gland Stem/Progenitor Cell Fate by Influencing Notch Signaling. Stem Cells, 2012, 30, 1496-1508.	3.2	110
21	Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: Failure of Stat5 activation and functional differentiation in the absence of Elf5. Developmental Biology, 2009, 329, 227-241.	2.0	125