
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302612/publications.pdf Version: 2024-02-01

Ι ΕΙ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Synthetic strategies, diverse structures and tuneable properties of polyoxo-titanium clusters. Chemical Society Reviews, 2018, 47, 404-421.	38.1	272
2	Synthesis, Structure, and Luminescent Properties of Hybrid Inorganicâ´'Organic Framework Materials Formed by Lead Aromatic Carboxylates: Inorganic Connectivity Variation from 0D to 3D. Inorganic Chemistry, 2009, 48, 6517-6525.	4.0	204
3	A 3.6 nm Ti ₅₂ –Oxo Nanocluster with Precise Atomic Structure. Journal of the American Chemical Society, 2016, 138, 7480-7483.	13.7	193
4	Fullerene-like Polyoxotitanium Cage with High Solution Stability. Journal of the American Chemical Society, 2016, 138, 2556-2559.	13.7	183
5	Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie - International Edition, 2016, 55, 5160-5165.	13.8	181
6	A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production. Nature Communications, 2016, 7, 13169.	12.8	158
7	Creating Well-Defined Hexabenzocoronene in Zirconium Metal–Organic Framework by Postsynthetic Annulation. Journal of the American Chemical Society, 2019, 141, 2054-2060.	13.7	148
8	Water-Soluble and Ultrastable Ti ₄ L ₆ Tetrahedron with Coordination Assembly Function. Journal of the American Chemical Society, 2017, 139, 16845-16851.	13.7	145
9	Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metalâ	4.0	132
10	lsomerism in Titaniumâ€Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angewandte Chemie - International Edition, 2019, 58, 1320-1323.	13.8	121
11	Assembling Polyoxoâ€Titanium Clusters and CdS Nanoparticles to a Porous Matrix for Efficient and Tunable H ₂ â€Evolution Activities with Visible Light. Advanced Materials, 2017, 29, 1603369.	21.0	113
12	Atomically Precise Multimetallic Semiconductive Nanoclusters with Optical Limiting Effects. Angewandte Chemie - International Edition, 2018, 57, 11252-11256.	13.8	99
13	From Platonic Templates to Archimedean Solids: Successive Construction of Nanoscopic {V16As8}, {V16As10}, {V20As8}, and {V24As8} Polyoxovanadate Cages. Journal of the American Chemical Society, 2011, 133, 11240-11248.	13.7	94
14	Supramolecular Isomerism and Various Chain/Layer Substructures in Silver(I) Compounds: Syntheses, Structures, and Luminescent Properties. Crystal Growth and Design, 2009, 9, 4884-4896.	3.0	93
15	Chiral Porous Metacrystals: Employing Liquid-Phase Epitaxy to Assemble Enantiopure Metal–Organic Nanoclusters into Molecular Framework Pores. ACS Nano, 2016, 10, 977-983.	14.6	83
16	Organically templated metal–organic framework with 2-fold interpenetrated {33.59.63}-lcy net. Chemical Communications, 2008, , 2532.	4.1	74
17	N-donor ligands enhancing luminescence properties of seven Zn/Cd(<scp>ii</scp>) MOFs based on a large rigid I€-conjugated carboxylate ligand. CrystEngComm, 2015, 17, 9155-9166.	2.6	69
18	Breaking the Mirror: pH ontrolled Chirality Generation from a <i>meso</i> Ligand to a Racemic Ligand. Chemistry - A European Journal, 2009, 15, 989-1000.	3.3	67

#	Article	IF	CITATIONS
19	Influencing the Symmetry of Highâ€Nuclearity and Highâ€Spin Manganese Oxo Clusters: Supramolecular Approaches to Manganeseâ€Based Keplerates and Chiral Solids. Angewandte Chemie - International Edition, 2012, 51, 3007-3011.	13.8	63
20	Combining a Titanium–Organic Cage and a Hydrogenâ€Bonded Organic Cage for Highly Effective Thirdâ€Order Nonlinear Optics. Angewandte Chemie - International Edition, 2021, 60, 2920-2923.	13.8	59
21	Ag ₁₀ Ti ₂₈ â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie - International Edition, 2019, 58, 10932-10935.	13.8	57
22	Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 4510-4519.	11.2	57
23	Recent advances in heterometallic polyoxotitanium clusters. Coordination Chemistry Reviews, 2020, 404, 213099.	18.8	56
24	Titanium–Oxo Cluster Based Precise Assembly for Multidimensional Materials. Chemistry of Materials, 2017, 29, 2681-2684.	6.7	50
25	Optical Resolution of the Water-Soluble Ti ₄ (embonate) ₆ Cages for Enantioselective Recognition of Chiral Drugs. Chemistry of Materials, 2018, 30, 7769-7775.	6.7	49
26	Azole Functionalized Polyoxo-Titanium Clusters with Sunlight-Driven Dye Degradation Applications: Synthesis, Structure, and Photocatalytic Studies. Inorganic Chemistry, 2016, 55, 10294-10301.	4.0	47
27	Self-assembly of hybrid organic–inorganic polyoxovanadates: functionalised mixed-valent clusters and molecular cages. Dalton Transactions, 2012, 41, 2918.	3.3	45
28	A structure-directing method to prepare semiconductive zeolitic cluster–organic frameworks with Cu ₃ I ₄ building units. Chemical Communications, 2015, 51, 8994-8997.	4.1	44
29	Polyoxometalates: Tailoring metal oxides in molecular dimension toward energy applications. International Journal of Energy Research, 2020, 44, 3316-3346.	4.5	41
30	New Coordination Motifs of Melamine Directed by Nâ^'H··À (X = Cl or Br) Hydrogen Bonds. Inorganic Chemistry, 2007, 46, 5838-5840.	4.0	39
31	How Does Substitutional Doping Affect Visible Light Absorption in a Series of Homodisperse Ti ₁₁ Polyoxotitanate Nanoparticles?. Chemistry - A European Journal, 2015, 21, 11538-11544.	3.3	39
32	Assembly of titanium-oxo cations with copper-halide anions to form supersalt-type cluster-based materials. Chemical Communications, 2017, 53, 3949-3951.	4.1	39
33	Black Titanium-Oxo Clusters with Ultralow Band Gaps and Enhanced Nonlinear Optical Performance. Journal of the American Chemical Society, 2022, 144, 8153-8161.	13.7	39
34	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954.	13.8	38
35	Hybrid Polyoxovanadates: Anion-Influenced Formation of Nanoscopic Cages and Supramolecular Assemblies of Asymmetric Clusters. Inorganic Chemistry, 2012, 51, 19-21.	4.0	37
36	Connecting Titanium-Oxo Clusters by Nitrogen Heterocyclic Ligands to Produce Multiple Cluster Series with Photocatalytic H ₂ Evolution Activities. Crystal Growth and Design, 2017, 17, 3592-3595.	3.0	37

#	Article	IF	CITATIONS
37	Deep eutectic-solvothermal synthesis of titanium-oxo clusters protected by π-conjugated chromophores. Chemical Communications, 2017, 53, 8078-8080.	4.1	36
38	Tetrahedral Geometry Induction of Stable Ag–Ti Nanoclusters by Flexible Trifurcate TiL ₃ Metalloligand. Journal of the American Chemical Society, 2020, 142, 12784-12790.	13.7	35
39	Bandgap Engineering of Titanium–Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation. Angewandte Chemie, 2016, 128, 5246-5251.	2.0	34
40	Homochiral Cluster-Organic Frameworks Constructed from Enantiopure Lactate Derivatives. Crystal Growth and Design, 2015, 15, 4676-4686.	3.0	33
41	Protonated 3-amino-1,2,4-triazole templated luminescent lanthanide isophthalates with a rare (3,6)-connected topology. CrystEngComm, 2009, 11, 2734.	2.6	31
42	Acid ontrolled Synthesis of Carboxylateâ€6tabilized Ti ₄₄ â€Oxo Clusters: Scaling up Preparation, Exchangeable Protecting Ligands, and Photophysical Properties. Chemistry - A European Journal, 2019, 25, 10450-10455.	3.3	31
43	Supramolecular Approach by Using Jahn–Teller Sites to Construct a {Mn ₁₃ }â€Based Coordination Polymer and Modify its Magnetic Properties. Chemistry - A European Journal, 2012, 18, 13984-13988.	3.3	30
44	A new cadmium-doped titanium–oxo cluster with stable photocatalytic H ₂ evolution properties. Dalton Transactions, 2016, 45, 4501-4503.	3.3	30
45	Synthetic investigation, structural analysis and photocatalytic study of a carboxylate–phosphonate bridged Ti ₁₈ -oxo cluster. Dalton Transactions, 2017, 46, 803-807.	3.3	29
46	Supramolecular approaches to metal–organic gels using â€~Chevrel-type' coordination clusters as building units. Chemical Communications, 2013, 49, 66-68.	4.1	28
47	Cocrystal of {Ti ₄ } and {Ti ₆ } Clusters with Enhanced Photochemical Properties. Inorganic Chemistry, 2017, 56, 2367-2370.	4.0	28
48	Assembly of high-nuclearity Sn26, Sn34-oxo clusters: solvent strategies and inorganic Sn incorporation. Chemical Science, 2019, 10, 9125-9129.	7.4	28
49	Self-Assembly of Hybrid Organicâ^'Inorganic Polyoxomolybdates: Solid-State Structures and Investigation of Formation and Core Rearrangements in Solution. Inorganic Chemistry, 2011, 50, 604-613.	4.0	27
50	A Series of Homochiral Helical Metal–Organic Frameworks Based on Proline Derivatives. Crystal Growth and Design, 2015, 15, 5901-5909.	3.0	27
51	Solvent and pH Driven Self-Assembly of Isomeric or Isomorphic Complexes: Crystal Structure and Luminescent Change upon Desolvation. Crystal Growth and Design, 2016, 16, 4012-4020.	3.0	27
52	Synthesis, Structures, and Photocurrent Responses of Polyoxo-Titanium Clusters with Oxime Ligands: From Ti ₄ to Ti ₁₈ . Inorganic Chemistry, 2018, 57, 8850-8856.	4.0	27
53	Antiferromagnetic interactions in melamine-bridged trinuclear cobalt complex. Inorganic Chemistry Communication, 2008, 11, 279-282.	3.9	25
54	Host–Guest and Photophysical Behavior of Ti ₈ L ₁₂ Cube with Encapsulated [Ti(H ₂ O) ₆] Species. Chemistry - A European Journal, 2018, 24, 14358-14362.	3.3	24

#	Article	IF	CITATIONS
55	One-Pot and Postsynthetic Phenol-Thermal Synthesis toward Highly Stable Titanium-Oxo Clusters. Inorganic Chemistry, 2019, 58, 13353-13359.	4.0	24
56	Leadâ€Doped Titaniumâ€Oxo Clusters as Molecular Models of Perovskiteâ€Type PbTiO ₃ and Electronâ€Transport Material in Solar Cells. Chemistry - A European Journal, 2020, 26, 6894-6898.	3.3	24
57	Diverse Zn(II) MOFs assembled from V-shaped asymmetric multicarboxylate and N-donor ligands. Journal of Molecular Structure, 2016, 1106, 192-199.	3.6	23
58	Novel (3,6)-connected network and (4,6)-connected framework in two copper(II) and cadmium(II) complexes of flexible (2S,3S,4R,5R)-tetrahydrofurantetracarboxylic acid: synthesis, structure, thermostability, and luminescence studies. CrystEngComm, 2009, 11, 1934.	2.6	22
59	Canted antiferromagnetic behaviours in isostructural Co(ii) and Ni(ii) frameworks with helical lvt topology. CrystEngComm, 2010, 12, 2938.	2.6	22
60	Facile Synthesis of Metal-Loaded Porous Carbon Thin Films via Carbonization of Surface-Mounted Metal–Organic Frameworks. Inorganic Chemistry, 2017, 56, 3526-3531.	4.0	21
61	Synthesis and photocatalytic H2 evolution properties of four titanium-oxo-clusters based on a cyclohex-3-ene-1-carboxylate ligand. Dalton Transactions, 2017, 46, 10630-10634.	3.3	21
62	lsomerism in Titaniumâ€Oxo Clusters: Molecular Anatase Model with Atomic Structure and Improved Photocatalytic Activity. Angewandte Chemie, 2019, 131, 1334-1337.	2.0	21
63	Ti ₄ (embonate) ₆ Cage-Ligand Strategy on the Construction of Metal–Organic Frameworks with High Stability and Gas Sorption Properties. Inorganic Chemistry, 2020, 59, 964-967.	4.0	21
64	Experimental and Theoretical Studies on Effects of Structural Modification of Tin Nanoclusters for Third-Order Nonlinear Optical Properties. Inorganic Chemistry, 2021, 60, 1885-1892.	4.0	21
65	Homochiral moganite-type metal–organic framework based on unusual (Ag2Cl)n skeletons. CrystEngComm, 2008, 10, 655.	2.6	20
66	Waterâ€ 5 table Homochiral Cluster Organic Frameworks Built by Two Kinds of Large Tetrahedral Cluster Units. Chemistry - A European Journal, 2016, 22, 2611-2615.	3.3	20
67	Ligand dependent assembly of trinuclear titanium-oxo units into coordination tetrahedra and capsules. Dalton Transactions, 2018, 47, 663-665.	3.3	20
68	Atomically Precise Multimetallic Semiconductive Nanoclusters with Optical Limiting Effects. Angewandte Chemie, 2018, 130, 11422-11426.	2.0	20
69	Construction of Cluster Organic Frameworks with <i>bnn</i> Hexagonal BN Topologies. Chemistry - A European Journal, 2015, 21, 15511-15515.	3.3	19
70	Ti ₄ (embonate) ₆ Based Cage-Cluster Construction in a Stable Metal–Organic Framework for Gas Sorption and Separation. Crystal Growth and Design, 2020, 20, 29-32.	3.0	19
71	Ag(I)-Mediated In situ Dehydrogenative Coupling of 3-Amino-1,2,4-triazole into 3,3′-Azobis(1,2,4-triazole) in Cd(II) Coordination Polymers. Inorganic Chemistry, 2009, 48, 10859-10861.	4.0	18
72	Configuration determination of flexible tetracarboxylate ligands in two supramolecular structures. CrystEngComm, 2009, 11, 1201.	2.6	18

#	Article	IF	CITATIONS
73	A viologen-functionalized metal–organic framework for efficient CO ₂ photoreduction reaction. Chemical Communications, 2022, 58, 7507-7510.	4.1	18
74	Structures and photophysical performances of (fluoro)salicylate stabilized polyoxo-titanium clusters. CrystEngComm, 2018, 20, 5964-5968.	2.6	17
75	Stepwise assembly and reversible structural transformation of ligated titanium coated bismuth-oxo cores: shell morphology engineering for enhanced chemical fixation of CO ₂ . Chemical Science, 2022, 13, 3395-3401.	7.4	17
76	Visible Concentration-Sensitive Structural Transformation. Crystal Growth and Design, 2010, 10, 1464-1467.	3.0	16
77	pH-dependent assembly of two polyoxometalate host–guest structural isomers based on Keggin polyoxoanion templates. Dalton Transactions, 2014, 43, 16328-16334.	3.3	16
78	Multiarylpolycarboxylate-Mediated Hybrid Cobalt Phosphate Frameworks with Supramolecular Zeolitic Topology and Unusual I2O2 Connectivity. Inorganic Chemistry, 2015, 54, 1209-1211.	4.0	16
79	Dicarboxylate Ligands Oriented Assembly of {Ti ₃ (μ ₃ -O)} Units: From Dimer to Coordination Triangles and Rectangles. Inorganic Chemistry, 2018, 57, 5642-5647.	4.0	16
80	Stabilizing γ-Alkyltin–Oxo Keggin Ions by Borate Functionalization. Inorganic Chemistry, 2019, 58, 4534-4539.	4.0	16
81	Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Research, 2021, 14, 2309.	10.4	16
82	Magnetic investigation of two helical frameworks derived from mixed ligands. Inorganica Chimica Acta, 2007, 360, 3525-3532.	2.4	14
83	Construction of molecular rectangles with titanium–oxo clusters and rigid aromatic carboxylate ligands. Dalton Transactions, 2017, 46, 16000-16003.	3.3	14
84	Atomically Precise Titanium–Oxo Nanotube with Selective Water Adsorption and Semiconductive Behaviors. CCS Chemistry, 2020, 2, 209-215.	7.8	14
85	A perovskite/porous GaN crystal hybrid structure for ultrahigh sensitivity ultraviolet photodetectors. Journal of Materials Chemistry C, 2022, 10, 8321-8328.	5.5	14
86	Silverâ€Templated γâ€Keggin Alkyltinâ€Oxo Cluster: Electronic Structure and Optical Limiting Effect. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
87	Ligand-directed assembly engineering of trapezoidal {Ti ₅ } building blocks stabilized by dimethylglyoxime. Dalton Transactions, 2019, 48, 9916-9919.	3.3	13
88	Amino-Polyalcohol-Solvothermal Synthesis of Titanium-Oxo Clusters: From Ti ₆ to Ti ₁₉ with Structural Diversity. Inorganic Chemistry, 2019, 58, 7267-7273.	4.0	13
89	Pyrazole-thermal synthesis: a new approach towards N-rich titanium-oxo clusters with photochromic behaviors. Dalton Transactions, 2019, 48, 8049-8052.	3.3	13
90	Rational Preparation of Atomically Precise Non-Alkyl Tin-Oxo Clusters with Theoretical to Experimental Insights into Electrocatalytic CO ₂ Reduction Applications. CCS Chemistry, 2021, 3, 2607-2616.	7.8	13

#	Article	IF	CITATIONS
91	Synthesis, crystal structure and fluorescence properties of two dinuclear zinc(II) complexes incorporating tridentate (NNO) Schiff bases. Journal of Coordination Chemistry, 2016, 69, 2403-2414.	2.2	12
92	Halogen dependent symmetry change in two series of wheel cluster organic frameworks built from La ₁₈ tertiary building units. Chemical Communications, 2016, 52, 1455-1457.	4.1	12
93	Aggregation of dinuclear {Fe2hpdta} units to form polynuclear oxy/hydroxy-bridged Fe(iii) coordination complexes. Dalton Transactions, 2010, 39, 10279.	3.3	11
94	Two luminescent bcu-type metal-organic frameworks constructed from distinct cadmium clusters. Inorganic Chemistry Communication, 2015, 56, 83-86.	3.9	11
95	Embonic Acid Functionalized Niobium Complexes with Selective Dye Sorption Properties. Inorganic Chemistry, 2018, 57, 4226-4229.	4.0	11
96	A core–shell type alkyl-Sn-oxo cluster of {Sn ₁₄ As ₁₆ } bridged by 4-aminophenylarsonate ligands and incorporated with a {Na ₆ } cluster. Chemical Communications, 2020, 56, 1433-1435.	4.1	11
97	Molecular bixbyite-like In ₁₂ -oxo clusters with tunable functionalization sites for lithography patterning applications. Chemical Science, 2021, 12, 14414-14419.	7.4	11
98	Synergistic Lewis acid and Pd active sites of metal–organic frameworks for highly efficient carbonylation of methyl nitrite to dimethyl carbonate. Inorganic Chemistry Frontiers, 2022, 9, 2379-2388.	6.0	11
99	A facile "bottom-up―approach to prepare free-standing nano-films based on manganese coordination clusters. Chemical Communications, 2013, 49, 7400.	4.1	10
100	Protection of Ag Clusters by Metalâ€Oxo Modules. Chemistry - A European Journal, 2021, 27, 15563-15570.	3.3	10
101	Sn ₆ and Na ₄ Oxo Clusters Based Non-centrosymmetric Framework for Solution Iodine Absorption and Second Harmonic Generation Response. Inorganic Chemistry, 2021, 60, 1985-1990.	4.0	10
102	Non-alkyl tin-oxo clusters as new-type patterning materials for nanolithography. Science China Chemistry, 2022, 65, 114-119.	8.2	10
103	Improving the photocatalytic H2 evolution activities of TiO2 by modulating the stabilizing ligands of the nanoscale Ti8O8-cluster precursors. International Journal of Hydrogen Energy, 2017, 42, 24737-24743.	7.1	9
104	Ag 10 Ti 28 â€Oxo Cluster Containing Singleâ€Atom Silver Sites: Atomic Structure and Synergistic Electronic Properties. Angewandte Chemie, 2019, 131, 11048-11051.	2.0	9
105	An Fe(<scp>iii</scp>)-doped coordination polymer of Mn ₁₃ -clusters with improved activity for the oxygen reduction reaction. Dalton Transactions, 2019, 48, 4794-4797.	3.3	9
106	Supramolecular Co-assembly of the Ti ₈ L ₁₂ Cube with [Ti(DMF) ₆] Species and Ti ₁₂ -Oxo Cluster. Inorganic Chemistry, 2020, 59, 8291-8297.	4.0	9
107	Synergistic ligand effect for the construction of titanium–oxo clusters with planar chirality and high solution stability. Dalton Transactions, 2020, 49, 4030-4033.	3.3	9
108	Combining a Titanium–Organic Cage and a Hydrogenâ€Bonded Organic Cage for Highly Effective Thirdâ€Order Nonlinear Optics. Angewandte Chemie, 2021, 133, 2956-2959.	2.0	9

#	Article	IF	CITATIONS
109	pH-controlled assembly of two supramolecular architectures based on Cu(II)-metallacycle building blocks. Journal of Molecular Structure, 2008, 891, 138-142.	3.6	8
110	Coordination Assembly of the Waterâ€Soluble Ti 4 (embonate) 6 Cages with Mn 2+ Ions. Israel Journal of Chemistry, 2019, 59, 233-236.	2.3	8
111	A green separation process of Ag <i>via</i> a Ti ₄ (embonate) ₆ cage. Dalton Transactions, 2020, 49, 17194-17199.	3.3	8
112	A Simultaneous Hydrolysis, Deaminization, and Self-assembly Reaction under Hydrothermal Conditions Affording a Novel Hydroge–Bonding Network: NH4[Cu(H2CAC)2]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 1902-1905.	1.2	7
113	Towards Nanoscopic Mn-Containing Hybrid Polyoxomolybdates: Synthesis, Structure, Magnetic Properties, and Solution Behavior of a {Mn6Mo10} Cluster. European Journal of Inorganic Chemistry, 2013, 2013, 1654-1658.	2.0	7
114	A highly stable face-extended diamondoid cluster–organic framework incorporating infinite inorganic guests. Chemical Communications, 2015, 51, 17174-17177.	4.1	7
115	Hydrothermal synthesis, structures and visible light harvest of three titanium complexes. Inorganic Chemistry Communication, 2018, 93, 61-64.	3.9	7
116	A Mn ₁₃ -cluster based coordination polymer as a co-catalyst of CdS for enhanced visible-light driven H ₂ evolution. Dalton Transactions, 2018, 47, 10857-10860.	3.3	7
117	Sn ₁₃ –Oxo Clusters with an Open Hollow Structural Motif and Decorated by Different Functional Ligands. Inorganic Chemistry, 2019, 58, 15692-15695.	4.0	7
118	Heterometallic Ag ₂ Ti ₁₀ and Ag ₄ Ti ₈ -oxo clusters with different silver doping models: synthesis, structure, and theoretical studies. Dalton Transactions, 2020, 49, 11005-11009.	3.3	7
119	Assembly and packing models of [Ti6Co12] ring based on the titanium-capped cobalt clathrochelates. Chinese Chemical Letters, 2021, 32, 923-925.	9.0	7
120	Crystalline mixed-valence copper supramolecular isomers for electroreduction of CO ₂ to hydrocarbons. Journal of Materials Chemistry A, 2021, 9, 23477-23484.	10.3	7
121	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solid‣tate Optical‣imiting Application. Angewandte Chemie, 2021, 133, 13059-13064.	2.0	7
122	Anion-directed supramolecular chemistry modulating the magnetic properties of nanoscopic Mn coordination clusters: from polynuclear high-spin complexes to SMMs. Dalton Transactions, 2016, 45, 17705-17713.	3.3	6
123	A series of zirconium-oxo cluster complexes based on arsenate or phosphonate ligands. Inorganic Chemistry Communication, 2018, 97, 125-128.	3.9	6
124	Wheelâ€ S hape Heterometallic Ti ₁₀ M ₂ â€oxo Clusters (M = Ni, Co) with Effective Visible Light Absorption. Chinese Journal of Chemistry, 2019, 37, 233-236.	4.9	6
125	Synthesis, Crystal Structure, and Visible Light Responses of Ti 4 Cu 4 â€Oxo Clusters with Mixed Valence Copper Ions. Chinese Journal of Chemistry, 2020, 38, 87-90.	4.9	6
126	Synthesis and Structure of a Series of Ti ₆ â€oxo Clusters Functionalized by <i>in situ</i> Esterified Dicarboxylate Ligands. Chinese Journal of Chemistry, 2021, 39, 1259-1264.	4.9	6

#	Article	IF	CITATIONS
127	Phenol-triggered supramolecular transformation of titanium–oxo cluster based coordination capsules. Chinese Chemical Letters, 2021, 32, 2415-2418.	9.0	6
128	Macrocyclic Inorganic Tinâ€Containing Oxo Clusters: Heterometallic Strategy for Configuration and Catalytic Activity Modulation. Chemistry - A European Journal, 2021, 27, 16117-16120.	3.3	6
129	p-Arsanilic acid stabilizing titanium-oxo clusters with various core structures and light absorption behaviours. Inorganic Chemistry Communication, 2017, 86, 14-17.	3.9	5
130	Bio-inspired synthetic approaches: from hierarchical, hybrid supramolecular assemblies to CaCO3-based microspheres. Dalton Transactions, 2017, 46, 6456-6463.	3.3	5
131	Unraveling the condensation reactions of heterometallic {BiNb4} moieties into hybrid BixNby-oxo clusters with mass spectrometry. Science China Chemistry, 2021, 64, 413-418.	8.2	5
132	Preparation and properties of polyoxo-titanium clusters. Chinese Science Bulletin, 2018, 63, 2731-2744.	0.7	5
133	catena-Poly[[diaquazinc(II)]-Î1⁄4-4,4′-sulfonyldibenzoato-κ2O:O′]. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m270-m272.	0.4	4
134	Functional ligand directed assembly and electronic structure of Sn ₁₈ -oxo wheel nanoclusters. Chemical Communications, 2021, 57, 5159-5162.	4.1	4
135	Syntheses and Structural Studies of a Series of Ti4(embonate)6-based Complexes. Acta Chimica Sinica, 2020, 78, 1411.	1.4	4
136	Triethanolamine stabilized non-alkyl Sn ₄ Cd ₄ and alkyl Sn ₂ Cd ₁₂ oxo clusters with distinct electrocatalytic activities. Chemical Communications, 2022, 58, 4759-4762.	4.1	4
137	Zeolitic metal-biomolecule frameworks based on supertetrahedral lithium clusters and hypoxanthine nucleobase. Inorganic Chemistry Communication, 2016, 71, 82-85.	3.9	3
138	Hydrogen bond-assisted homochiral lattice packing between inorganic helices built from heterometallic units. Dalton Transactions, 2018, 47, 2134-2137.	3.3	3
139	Synthesis and Photoelectric Properties of Metal–Organic Zeolites Built from TO ₄ and Organotin. Inorganic Chemistry, 2019, 58, 12521-12525.	4.0	3
140	In situ generated pyroglutamate bridged polyoxotitaniums with strong circular dichroism signal. Chinese Chemical Letters, 2019, 30, 1005-1008.	9.0	3
141	Synthesis, Structure, and Light Absorption Behaviors of Prismatic Titanium-Oxo Clusters Containing Lacunary Lindqvist-like Species. Inorganic Chemistry, 2022, 61, 1385-1390.	4.0	3
142	Inorganic acid influenced formation of Ti ₂₆ and Ti ₄₄ oxysulfate clusters with toroidal and capsule structures. Dalton Transactions, 2022, , .	3.3	3
143	Preparation and Visible-Light Response of Salicylate-Stabilized Heterobimetallic Pb–Ti–Oxo Clusters Initiated via Auxiliary Quaternary Ammonium Salts and a Solvent Effect. Inorganic Chemistry, 2022, 61, 5017-5024.	4.0	3
144	Construction and two-dimensional assembly of double-shell Na@Sn ₆ L ₆ @Sn ₃ L ₃ clusters through tetrahedral citrate ligands. Chemical Communications, 2022, 58, 5650-5652.	4.1	3

#	Article	IF	CITATIONS
145	Supramolecular Coordination Assemblies Using 2-Aminodiacetic Terephthalic Acid Ligands: K[Nill(Hadta)(H2O)2]·H2O and K[Cu 1.5 II (adta)(H2O)1.5]·H2O. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 655-661.	3.7	1
146	Synthesis and structural characterization of a dumbbell-like phenylphosphonate-stabilized Ti ₇ –oxide cluster. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1248-1251.	0.5	1
147	{4,6-Bis[(E)-1-methyl-2-(pyridin-2-ylmethylidene)hydrazinyl]pyrimidine-κ3N,N′,N′′}dichloridomanganese(I Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1676-m1676.	l) _{0.2}	1
148	Atomically Precise Zr-Oxo and Zr/Ti-Oxo Nanoclusters by Deep Eutectic-Solvothermal Synthesis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 781-785.	4.9	1
149	Silverâ€Templated γâ€Keggin Alkyltinâ€Oxo Cluster: Electronic Structure and Optical Limiting Effect. Angewandte Chemie, 2022, 134, .	2.0	1
150	Hierarchical assembly and structural regulation of Ti ₈ Ag ₂ oxo clusters <i>via</i> varying the length of the carbon chains in di-phosphine ligands. Journal of Coordination Chemistry, 2022, 75, 1760-1767.	2.2	1
151	Conjugated ligands effect for the electrocatalytic CO2 reduction activity of Sn6O6 platform by experimental and theoretical studies. Carbon Capture Science & Technology, 2022, 4, 100055.	10.4	1
152	Titelbild: Atomically Precise Multimetallic Semiconductive Nanoclusters with Optical Limiting Effects (Angew. Chem. 35/2018). Angewandte Chemie, 2018, 130, 11249-11249.	2.0	0
153	Rational assembly of metal-oxo clusters into molecular materials <i>via</i> a "wheel mounting― mode. Inorganic Chemistry Frontiers, 2021, 8, 4102-4106.	6.0	0