Satoru Kondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1302312/publications.pdf Version: 2024-02-01

SATORI KONDO

#	Article	IF	CITATIONS
1	Retardation of Endogenous ABA Synthesis by NDGA in Leaves Affects Anthocyanin, Sugar, and Aroma Volatile Concentrations in †̃Kyoho' Grape Berries. Horticulture Journal, 2022, 91, 186-194.	0.8	2
2	Usage and action mechanism of oxylipins including jasmonic acid on physiological aspects of fruit production. Scientia Horticulturae, 2022, 295, 110893.	3.6	12
3	Usage and action of plant growth regulators in horticultural crop production. Scientia Horticulturae, 2022, 304, 111293.	3.6	0
4	l-Isoleucine (Ile) Promotes Anthocyanin Accumulation in Apples. Journal of Plant Growth Regulation, 2021, 40, 541-549.	5.1	5
5	Postharvest UV-C Irradiation Influenced Cellular Structure, Jasmonic Acid Accumulation, and Resistance Against Green Mold Decay in Satsuma Mandarin Fruit (Citrus unshiu). Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	12
6	Carotenoids accumulation and carotenoids biosynthesis gene expression during fruit development in pulp of Tubtim-Siam pummelo fruit. Scientia Horticulturae, 2020, 260, 108870.	3.6	6
7	Paclobutrazol elevates auxin and abscisic acid, reduces gibberellins and zeatin and modulates their transporter genes in Marubakaido apple (Malus prunifolia Borkh. var. ringo Asami) rootstocks. Plant Physiology and Biochemistry, 2020, 155, 502-511.	5.8	20
8	Inhibition of Abscisic Acid 8′-Hydroxylase Affects Dehydration Tolerance and Root Formation in Cuttings of Grapes (Vitis labrusca L. × Vitis vinifera L. cv. Kyoho) Under Drought Stress Conditions. Journal of Plant Growth Regulation, 2020, 39, 1577-1586.	5.1	7
9	Association of auxin, cytokinin, abscisic acid, and plant peptide response genes during adventitious root formation in Marubakaido apple rootstock (Malus prunifolia Borkh. var. ringo Asami). Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	6
10	Abscisic acid affects ethylene metabolism and carotenoid biosynthesis in Japanese apricot (Prunus) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
11	<i>n</i> -Propyl dihydrojasmonates influence ethylene signal transduction in infected apple fruit by <i>Botrytis cinerea</i> . Horticulture Journal, 2019, 88, 41-49.	0.8	7
12	QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera) Tj ETQq0 0 (OrgBT ∕Ov	erlock 10 Tf
13	Oxylipin affects ethylene metabolism and ethylene receptor gene expression levels in peach fruit (Prunus persica L. ÂBatsch). Journal of Horticultural Science and Biotechnology, 2019, 94, 201-209.	1.9	1
14	Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples. Journal of Plant Physiology, 2018, 221, 85-93.	3.5	41
15	Effects of abscisic acid agonist or antagonist applications on aroma volatiles and anthocyanin biosynthesis in grape berries. Journal of Horticultural Science and Biotechnology, 2018, 93, 392-399.	1.9	14
16	Pre-harvest drought stress treatment improves antioxidant activity and sugar accumulation of sugar apple at harvest and during storage. Agriculture and Natural Resources, 2018, 52, 146-154.	0.1	7
17	Exogenous ABA and endogenous ABA affects â€~Kyoho' grape berry coloration in different pathway. Plant Gene, 2018, 14, 74-82.	2.3	6

¹⁸Effects of IPT or NDGA Application on ABA Metabolism and Maturation in Grape Berries. Journal of
Plant Growth Regulation, 2018, 37, 1210-1221.5.114

#	Article	IF	CITATIONS
19	Salt Tolerance in Apple Seedlings is Affected by an Inhibitor of ABA 8′-Hydroxylase CYP707A. Journal of Plant Growth Regulation, 2017, 36, 643-650.	5.1	12
20	Varietal differences in phenolic compounds metabolism of type 2 red-fleshed apples. Scientia Horticulturae, 2017, 219, 1-9.	3.6	16
21	Lipid droplet-associated gene expression and chromatin remodelling in LIPASE 5′-upstream region from beginning- to mid-endodormant bud in â€~Fuji' apple. Plant Molecular Biology, 2017, 95, 441-449.	3.9	9
22	Effects of Ethephon and Abscisic Acid Application on Ripening-Related Genes in â€~Kohi' Kiwifruit () Tj ETQq	0 0 0 rgBT 5.0gBT	- /Oyerlock 10
23	Effects of pre-harvest application of ethephon or abscisic acid on â€~Kohi' kiwifruit (Actinidia chinensis) Tj E	TQg1_1 0.	784314 rgBT
24	α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata). Journal of Plant Physiology, 2016, 192, 90-97.	3.5	13
25	Anthocyanin concentration and antioxidant activity in light-emitting diode (LED)-treated apples in a greenhouse environmental control system. Fruits, 2016, 71, 269-274.	0.4	20
26	Changes in abscisic acid and antioxidant activity in sugar apples under drought conditions. Scientia Horticulturae, 2015, 193, 1-6.	3.6	21
27	Jasmonate application influences endogenous abscisic acid, jasmonic acid and aroma volatiles in grapes infected by a pathogen (Glomerella cingulata). Scientia Horticulturae, 2015, 192, 166-172.	3.6	25
28	Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology, 2014, 171, 823-829.	3.5	87
29	Dehydration tolerance in apple seedlings is affected by an inhibitor of ABA 8′-hydroxylase CYP707A. Journal of Plant Physiology, 2012, 169, 234-241.	3.5	46
30	Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage. Scientia Horticulturae, 2012, 146, 45-51.	3.6	22
31	Abscinazole-E2B, a practical and selective inhibitor of ABA 8′-hydroxylase CYP707A. Bioorganic and Medicinal Chemistry, 2012, 20, 3162-3172.	3.0	21
32	Differential expression of allene oxide synthase (AOS), and jasmonate relationship with ethylene biosynthesis in seed and mesocarp of developing peach fruit. Postharvest Biology and Technology, 2012, 63, 67-73.	6.0	16
33	Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiologia Plantarum, 2012, , n/a-n/a.	5.2	46
34	Effect of Jasmonates on Ethylene Biosynthesis and Aroma Volatile Emission in Japanese Apricot Infected by a Pathogen (Colletotrichum gloeosporioides). Journal of Agricultural and Food Chemistry, 2011, 59, 6423-6429.	5.2	21
35	Abscinazole-E1, a novel chemical tool for exploring the role of ABA $8\hat{a}\in^2$ -hydroxylase CYP707A. Bioorganic and Medicinal Chemistry, 2011, 19, 406-413.	3.0	11
36	Effects of auxin and jasmonates on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression during ripening of apple fruit. Postharvest Biology and Technology, 2009, 51, 281-284.	6.0	42

Satoru Kondo

#	Article	IF	CITATIONS
37	Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8â€2-hydroxylase CYP707A with no growth-retardant effect. Bioorganic and Medicinal Chemistry, 2009, 17, 6620-6630.	3.0	24
38	Abscisic acid levels and anti-oxidant activity are affected by an inhibitor of cytochrome P450 in apple seedlings. Journal of Horticultural Science and Biotechnology, 2009, 84, 340-344.	1.9	8
39	Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. Journal of Experimental Botany, 2008, 59, 563-573.	4.8	97
40	Effect of low-temperature stress on abscisic acid, jasmonates, and polyamines in apples. Plant Growth Regulation, 2007, 52, 199-206.	3.4	58
41	Effect of Jasmonates Differed at Fruit Ripening Stages on 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase and ACC Oxidase Gene Expression in Pears. Journal of the American Society for Horticultural Science, 2007, 132, 120-125.	1.0	54
42	Effects of Drought Stress on Abscisic Acid and Jasmonate Metabolism in Citrus. Environmental Control in Biology, 2006, 44, 41-49.	0.7	6
43	Aroma volatile emission and expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes in pears treated with 2,4-DP. Postharvest Biology and Technology, 2006, 41, 22-31.	6.0	16
44	Antioxidant activity in meiwa kumquat as affected by environmental and growing factors. Environmental and Experimental Botany, 2005, 54, 60-68.	4.2	20
45	Preharvest antioxidant activities of tropical fruit and the effect of low temperature storage on antioxidants and jasmonates. Postharvest Biology and Technology, 2005, 36, 309-318.	6.0	107
46	Quantification of ABA and its metabolites in sweet cherries usingdeuterium-labeled internal standards. Plant Growth Regulation, 2005, 45, 183-188.	3.4	37
47	Antioxidant activity in astringent and non-astringent persimmons. Journal of Horticultural Science and Biotechnology, 2004, 79, 390-394.	1.9	38
48	Relationships between Jasmonates and Chilling Injury in Mangosteens Are Affected by Spermine. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1346-1348.	1.0	18
49	Relationship between ABA and chilling injury in mangosteen fruit treated with spermine. Plant Growth Regulation, 2003, 39, 119-124.	3.4	11
50	Deuterium-labeled Phaseic Acid and Dihydrophaseic Acids for Internal Standards. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2408-2415.	1.3	36
51	Polyamines in Developing Mangosteens and their Relationship to Postharvest Chilling Injury. Journal of the Japanese Society for Horticultural Science, 2003, 72, 318-320.	0.5	7
52	Environmental Factors and Physiologically Active Substances in Plants. Seibutsu Kankyo Chosetsu [Environment Control in Biology, 2003, 41, 73-87.	0.2	3
53	Expression of anthocyanin biosynthetic genes in <i>Malus sylvestris</i> L. â€~Mutsu' non-red apples. Journal of Horticultural Science and Biotechnology, 2002, 77, 718-73.	1.9	16
54	Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Scientia Horticulturae, 2002, 96, 177-185.	3.6	121

Satoru Kondo

#	Article	IF	CITATIONS
55	Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiology and Biochemistry, 2002, 40, 955-962.	5.8	265
56	Roles of jasmonic acid in the development of sweet cherries as measured from fruit or disc samples. Plant Growth Regulation, 2002, 37, 37-44.	3.4	17
57	Abscisic Acid Metabolism during Fruit Development and Maturation of Mangosteens. Journal of the American Society for Horticultural Science, 2002, 127, 737-741.	1.0	14
58	Changes in the Expression of Anthocyanin Biosynthetic Genes during Apple Development. Journal of the American Society for Horticultural Science, 2002, 127, 971-976.	1.0	62
59	Changes in physical characteristics and polyamines during maturation and storage of rambutans. Scientia Horticulturae, 2001, 91, 101-109.	3.6	19
60	Interactions between Jasmonates and Abscisic Acid in Apple Fruit, and Stimulative Effect of Jasmonates on Anthocyanin Accumulation Journal of the Japanese Society for Horticultural Science, 2001, 70, 546-552.	0.5	50
61	Changes of Endogenous Jasmonic Acid and Methyl Jasmonate in Apples and Sweet Cherries during Fruit Development. Journal of the American Society for Horticultural Science, 2000, 125, 282-287.	1.0	80
62	Relationship between Free and Conjugated ABA Levels in Seeded and Gibberellin-treated Seedless, Maturing `Pione' Grape Berries. Journal of the American Society for Horticultural Science, 1998, 123, 750-754.	1.0	27
63	Effects of AVG and 2,4-DP on Preharvest Drop and Fruit Quality of 'Tsugaru' Apples Journal of the Japanese Society for Horticultural Science, 1995, 64, 275-281.	0.5	20
64	Relationship between Abscisic Acid (ABA) Content and Maturation of the Sweet Cherry Journal of the Japanese Society for Horticultural Science, 1993, 62, 63-68.	0.5	55
65	Comparison of 1-Aminocyclopropane-1-carboxylic Acid, Abscisic Acid and Anthocyanin Content of Some Apple Cultivars during Fruit Growth and Maturation Journal of the Japanese Society for	0.5	39