
## **Robert W Cross**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1301494/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus<br>disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,<br>e2200065119.   | 7.1  | 27        |
| 2  | Reversion of Ebolavirus Disease from a Single Intramuscular Injection of a Pan-Ebolavirus<br>Immunotherapeutic. Pathogens, 2022, 11, 655.                                                                                  | 2.8  | 5         |
| 3  | Establishment of an African green monkey model for COVID-19 and protection against re-infection.<br>Nature Immunology, 2021, 22, 86-98.                                                                                    | 14.5 | 162       |
| 4  | Transcriptional Analysis of Lymphoid Tissues from Infected Nonhuman Primates Reveals the Basis for<br>Attenuation and Immunogenicity of an Ebola Virus Encoding a Mutant VP35 Protein. Journal of<br>Virology, 2021, 95, . | 3.4  | 2         |
| 5  | A single dose investigational subunit vaccine for human use against Nipah virus and Hendra virus. Npj<br>Vaccines, 2021, 6, 23.                                                                                            | 6.0  | 45        |
| 6  | Therapy for Argentine hemorrhagic fever in nonhuman primates with a humanized monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                           | 7.1  | 8         |
| 7  | Combination therapy protects macaques against advanced Marburg virus disease. Nature<br>Communications, 2021, 12, 1891.                                                                                                    | 12.8 | 37        |
| 8  | Use of convalescent serum reduces severity of COVID-19 in nonhuman primates. Cell Reports, 2021, 34, 108837.                                                                                                               | 6.4  | 23        |
| 9  | The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates.<br>Science Translational Medicine, 2021, 13, .                                                                           | 12.4 | 347       |
| 10 | Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins.<br>Nature Structural and Molecular Biology, 2021, 28, 426-434.                                                        | 8.2  | 33        |
| 11 | Ebola vaccine–induced protection in nonhuman primates correlates with antibody specificity and Fc-mediated effects. Science Translational Medicine, 2021, 13, .                                                            | 12.4 | 22        |
| 12 | Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and<br>Marburg Viruses. Frontiers in Immunology, 2021, 12, 703986.                                                                   | 4.8  | 23        |
| 13 | Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco<br>Mosaic Virus-like Nano-Particle. Vaccines, 2021, 9, 1347.                                                                   | 4.4  | 37        |
| 14 | An Intranasal Exposure Model of Lethal Nipah Virus Infection in African Green Monkeys. Journal of<br>Infectious Diseases, 2020, 221, S414-S418.                                                                            | 4.0  | 17        |
| 15 | Endotheliopathy and Platelet Dysfunction as Hallmarks of Fatal Lassa Fever. Emerging Infectious<br>Diseases, 2020, 26, 2625-2637.                                                                                          | 4.3  | 13        |
| 16 | Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages. Scientific Reports, 2020, 10, 16030.                             | 3.3  | 15        |
| 17 | Potent Henipavirus Neutralization by Antibodies Recognizing Diverse Sites on Hendra and Nipah Virus<br>Receptor Binding Protein. Cell, 2020, 183, 1536-1550.e17.                                                           | 28.9 | 28        |
| 18 | Prior vaccination with rVSV-ZEBOV does not interfere with but improves efficacy of postexposure antibody treatment. Nature Communications, 2020, 11, 3736.                                                                 | 12.8 | 11        |

**ROBERT W CROSS** 

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Crimean-Congo hemorrhagic fever virus strains Hoti and Afghanistan cause viremia and mild clinical<br>disease in cynomolgus monkeys. PLoS Neglected Tropical Diseases, 2020, 14, e0008637.                                | 3.0  | 18        |
| 20 | Intranasal exposure of African green monkeys to SARS-CoV-2 results in acute phase pneumonia with shedding and lung injury still present in the early convalescence phase. Virology Journal, 2020, 17, 125.                | 3.4  | 54        |
| 21 | Early Transcriptional Changes within Liver, Adrenal Gland, and Lymphoid Tissues Significantly<br>Contribute to Ebola Virus Pathogenesis in Cynomolgus Macaques. Journal of Virology, 2020, 94, .                          | 3.4  | 8         |
| 22 | Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. Journal of Virology, 2020, 94, .                                                                                                            | 3.4  | 28        |
| 23 | Immune correlates of postexposure vaccine protection against Marburg virus. Scientific Reports, 2020, 10, 3071.                                                                                                           | 3.3  | 22        |
| 24 | Resistance of Cynomolgus Monkeys to Nipah and Hendra Virus Disease Is Associated With<br>Cell-Mediated and Humoral Immunity. Journal of Infectious Diseases, 2020, 221, S436-S447.                                        | 4.0  | 21        |
| 25 | Rational design of universal immunotherapy for TfR1-tropic arenaviruses. Nature Communications, 2020, 11, 67.                                                                                                             | 12.8 | 16        |
| 26 | Analysis of a Therapeutic Antibody Cocktail Reveals Determinants for Cooperative and Broad<br>Ebolavirus Neutralization. Immunity, 2020, 52, 388-403.e12.                                                                 | 14.3 | 71        |
| 27 | A Cross-Reactive Humanized Monoclonal Antibody Targeting Fusion Glycoprotein Function Protects<br>Ferrets Against Lethal Nipah Virus and Hendra Virus Infection. Journal of Infectious Diseases, 2020,<br>221, S471-S479. | 4.0  | 39        |
| 28 | Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus<br>Neutralization. Cell, 2019, 178, 1004-1015.e14.                                                                            | 28.9 | 39        |
| 29 | Antibody therapy for Lassa fever. Current Opinion in Virology, 2019, 37, 97-104.                                                                                                                                          | 5.4  | 28        |
| 30 | Use of reverse genetics to inform Ebola outbreak responses. Lancet Infectious Diseases, The, 2019, 19, 925-927.                                                                                                           | 9.1  | 3         |
| 31 | Antagonism of STAT1 by Nipah virus P gene products modulates disease course but not lethal outcome<br>in the ferret model. Scientific Reports, 2019, 9, 16710.                                                            | 3.3  | 19        |
| 32 | A VP35 Mutant Ebola Virus Lacks Virulence but Can Elicit Protective Immunity to Wild-Type Virus<br>Challenge. Cell Reports, 2019, 28, 3032-3046.e6.                                                                       | 6.4  | 22        |
| 33 | Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever.<br>Scientific Reports, 2019, 9, 7755.                                                                                     | 3.3  | 43        |
| 34 | A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host and Microbe, 2019, 25, 49-58.e5.                                                                  | 11.0 | 82        |
| 35 | Quadrivalent VesiculoVax vaccine protects nonhuman primates from viral-induced hemorrhagic fever and death. Journal of Clinical Investigation, 2019, 130, 539-551.                                                        | 8.2  | 40        |
| 36 | Field validation of recombinant antigen immunoassays for diagnosis of Lassa fever. Scientific Reports,<br>2018, 8, 5939.                                                                                                  | 3.3  | 39        |

**ROBERT W CROSS** 

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Post-exposure treatments for Ebola and Marburg virus infections. Nature Reviews Drug Discovery, 2018, 17, 413-434.                                                                                                   | 46.4 | 104       |
| 38 | Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in<br>Nonhuman Primates. Journal of Infectious Diseases, 2018, 218, S565-S573.                                                  | 4.0  | 13        |
| 39 | Small animal models of filovirus disease: recent advances and future directions. Expert Opinion on Drug Discovery, 2018, 13, 1027-1040.                                                                              | 5.0  | 19        |
| 40 | Postexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses<br>of Marburg Virus Variant Angola in Nonhuman Primates. Journal of Infectious Diseases, 2018, 218,<br>S582-S587. | 4.0  | 28        |
| 41 | Marburg and Ravn Viruses Fail to Cause Disease in the Domestic Ferret (Mustela putorius furo).<br>Journal of Infectious Diseases, 2018, 218, S448-S452.                                                              | 4.0  | 13        |
| 42 | Comparative Transcriptomics in Ebola Makona-Infected Ferrets, Nonhuman Primates, and Humans.<br>Journal of Infectious Diseases, 2018, 218, S486-S495.                                                                | 4.0  | 15        |
| 43 | Infection with the Makona variant results in a delayed and distinct host immune response compared to previous Ebola virus variants. Scientific Reports, 2017, 7, 9730.                                               | 3.3  | 35        |
| 44 | Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever.<br>Nature Medicine, 2017, 23, 1146-1149.                                                                                  | 30.7 | 95        |
| 45 | Transcriptome Analysis of Circulating Immune Cell Subsets Highlight the Role of Monocytes in Zaire<br>Ebola Virus Makona Pathogenesis. Frontiers in Immunology, 2017, 8, 1372.                                       | 4.8  | 49        |
| 46 | Production of Antigens for ELISA. Methods in Molecular Biology, 2017, 1628, 353-362.                                                                                                                                 | 0.9  | 2         |
| 47 | ELISA Methods for the Detection of Ebolavirus Infection. Methods in Molecular Biology, 2017, 1628, 363-372.                                                                                                          | 0.9  | 3         |
| 48 | siRNA rescues nonhuman primates from advanced Marburg and Ravn virus disease. Journal of Clinical<br>Investigation, 2017, 127, 4437-4448.                                                                            | 8.2  | 26        |
| 49 | An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.                                                                                                    | 4.0  | 34        |
| 50 | Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nature Communications, 2016, 7, 11544.                                                         | 12.8 | 148       |
| 51 | Nipah Virus C and W Proteins Contribute to Respiratory Disease in Ferrets. Journal of Virology, 2016, 90, 6326-6343.                                                                                                 | 3.4  | 41        |
| 52 | Analytical Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus<br>Infection. Journal of Infectious Diseases, 2016, 214, S210-S217.                                                | 4.0  | 35        |
| 53 | Treatment of Lassa virus infection in outbred guinea pigs with first-in-classÂhuman monoclonal<br>antibodies. Antiviral Research, 2016, 133, 218-222.                                                                | 4.1  | 57        |
| 54 | Field Validation of the ReEBOV Antigen Rapid Test for Point-of-Care Diagnosis of Ebola Virus Infection.<br>Journal of Infectious Diseases, 2016, 214, S203-S209.                                                     | 4.0  | 29        |

**ROBERT W CROSS** 

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The Domestic Ferret ( <i>Mustela putorius furo</i> ) as a Lethal Infection Model for 3 Species<br>of <i>Ebolavirus</i> . Journal of Infectious Diseases, 2016, 214, 565-569.                                           | 4.0  | 80        |
| 56 | Pathogenic Differences between Nipah Virus Bangladesh and Malaysia Strains in Primates: Implications<br>for Antibody Therapy. Scientific Reports, 2016, 6, 30916.                                                      | 3.3  | 121       |
| 57 | Development of Prototype Filovirus Recombinant Antigen Immunoassays. Journal of Infectious<br>Diseases, 2015, 212, S359-S367.                                                                                          | 4.0  | 30        |
| 58 | Multiple Circulating Infections Can Mimic the Early Stages of Viral Hemorrhagic Fevers and Possible<br>Human Exposure to Filoviruses in Sierra Leone Prior to the 2014 Outbreak. Viral Immunology, 2015, 28,<br>19-31. | 1.3  | 33        |
| 59 | Modeling the Disease Course of <i>Zaire ebolavirus</i> Infection in the Outbred Guinea Pig. Journal of Infectious Diseases, 2015, 212, S305-S315.                                                                      | 4.0  | 43        |
| 60 | The immunomodulating V and W proteins of Nipah virus determine disease course. Nature<br>Communications, 2015, 6, 7483.                                                                                                | 12.8 | 78        |
| 61 | Comparison of the Pathogenesis of the Angola and Ravn Strains of Marburg Virus in the Outbred<br>Guinea Pig Model. Journal of Infectious Diseases, 2015, 212, S258-S270.                                               | 4.0  | 38        |
| 62 | Lassa Fever in Post-Conflict Sierra Leone. PLoS Neglected Tropical Diseases, 2014, 8, e2748.                                                                                                                           | 3.0  | 172       |
| 63 | Old World Hantaviruses in Rodents in New Orleans, Louisiana. American Journal of Tropical Medicine and Hygiene, 2014, 90, 897-901.                                                                                     | 1.4  | 10        |
| 64 | Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah<br>virus disease. Virology Journal, 2013, 10, 353.                                                               | 3.4  | 64        |
| 65 | Old World Hantavirus Infection in Rattus Species and Risk Management in Urban Neighborhoods of<br>New Orleans, Louisiana. Proceedings of the Vertebrate Pest Conference, 2012, 25, .                                   | 0.1  | 0         |
| 66 | Dengue virus-pandemic influenza virus co-infection results in enhanced influenza virus replication through inhibition of apoptosis. Retrovirology, 2012, 9, .                                                          | 2.0  | 0         |
| 67 | Genetic Diversity and Histo-Blood Group Antigen Interactions of Rhesus Enteric Caliciviruses. Journal of Virology, 2010, 84, 8617-8625.                                                                                | 3.4  | 113       |