
Agata Motyka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1301345/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogenicity within the LPS Structure in Relation to the Chosen Genomic and Physiological Features of the Plant Pathogen Pectobacterium parmentieri. International Journal of Molecular Sciences, 2022, 23, 2077.	4.1	7
2	Application of pulse-modulated radio-frequency atmospheric pressure glow discharge for degradation of doxycycline from a flowing liquid solution. Scientific Reports, 2022, 12, 7354.	3.3	3
3	The occurrence of bacteria from different species of Pectobacteriaceae on seed potato plantations in Poland. European Journal of Plant Pathology, 2021, 159, 309-325.	1.7	17
4	Comparative Genomics, from the Annotated Genome to Valuable Biological Information: A Case Study. Methods in Molecular Biology, 2021, 2242, 91-112.	0.9	0
5	Diseases Caused by Pectobacterium and Dickeya Species Around the World. , 2021, , 215-261.		25
6	Multivariate Optimization of the FLC-dc-APGD-Based Reaction-Discharge System for Continuous Production of a Plasma-Activated Liquid of Defined Physicochemical and Anti-Phytopathogenic Properties. International Journal of Molecular Sciences, 2021, 22, 4813.	4.1	4
7	The First Polish Isolate of a Novel Species Pectobacterium aquaticum Originates from a Pomeranian Lake. International Journal of Environmental Research and Public Health, 2021, 18, 5041.	2.6	6
8	Implementation of a Non-Thermal Atmospheric Pressure Plasma for Eradication of Plant Pathogens from a Surface of Economically Important Seeds. International Journal of Molecular Sciences, 2021, 22, 9256.	4.1	9
9	PacBio-Based Protocol for Bacterial Genome Assembly. Methods in Molecular Biology, 2021, 2242, 3-14.	0.9	1
10	Cold atmospheric pressure plasmas as versatile tools for effective degradation of a mixture of hazardous and endocrine disturbing compounds from liquid wastes. Journal of Environmental Chemical Engineering, 2021, 9, 106718.	6.7	5
11	Comprehensive studies on the properties of apple juice treated by non-thermal atmospheric plasma in a flow-through system. Scientific Reports, 2020, 10, 21166.	3.3	3
12	Comparative genomics and pangenome-oriented studies reveal high homogeneity of the agronomically relevant enterobacterial plant pathogen Dickeya solani. BMC Genomics, 2020, 21, 449.	2.8	16
13	The structure of the O-polysaccharide isolated from pectinolytic gram-negative bacterium Dickeya aquatica IFB0154 is different from the O-polysaccharides of other Dickeya species. Carbohydrate Research, 2020, 497, 108135.	2.3	7
14	Comparison of the characteristics of gold nanoparticles synthesized using aqueous plant extracts and natural plant essential oils of Eucalyptus globulus and Rosmarinus officinalis. Arabian Journal of Chemistry, 2019, 12, 4795-4805.	4.9	40
15	Rapid eradication of bacterial phytopathogens by atmospheric pressure glow discharge generated in contact with a flowing liquid cathode. Biotechnology and Bioengineering, 2018, 115, 1581-1593.	3.3	15
16	Fermented juices as reducing and capping agents for the biosynthesis of size-defined spherical gold nanoparticles. Journal of Saudi Chemical Society, 2018, 22, 767-776.	5.2	5
17	Population Structure and Biodiversity of <i>Pectobacterium parmentieri</i> Isolated from Potato Fields in Temperate Climate. Plant Disease, 2018, 102, 154-164.	1.4	37
18	Antibacterial Activity of Fructose-Stabilized Silver Nanoparticles Produced by Direct Current Atmospheric Pressure Glow Discharge towards Quarantine Pests. Nanomaterials, 2018, 8, 751.	4.1	29

Ασατά Μοτύκα

#	Article	IF	CITATIONS
19	Comparison of Highly and Weakly Virulent Dickeya solani Strains, With a View on the Pangenome and Panregulon of This Species. Frontiers in Microbiology, 2018, 9, 1940.	3.5	50
20	High genomic variability in the plant pathogenic bacterium Pectobacterium parmentieri deciphered from de novo assembled complete genomes. BMC Genomics, 2018, 19, 751.	2.8	28
21	Application of Silver Nanostructures Synthesized by Cold Atmospheric Pressure Plasma for Inactivation of Bacterial Phytopathogens from the Genera Dickeya and Pectobacterium. Materials, 2018, 11, 331.	2.9	21
22	Characterization of Dickeya and Pectobacterium strains obtained from diseased potato plants in different climatic conditions of Norway and Poland. European Journal of Plant Pathology, 2017, 148, 839-851.	1.7	42
23	The uniform structure of O-polysaccharides isolated from Dickeya solani strains of different origin. Carbohydrate Research, 2017, 445, 40-43.	2.3	14
24	Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview. New Biotechnology, 2017, 39, 181-189.	4.4	45
25	Growth of bacterial phytopathogens in animal manures. Acta Biochimica Polonica, 2017, 64, 151-159.	0.5	6
26	Biodiversity of <i>Dickeya</i> spp. Isolated from Potato Plants and Water Sources in Temperate Climate. Plant Disease, 2016, 100, 408-417.	1.4	64
27	The structure of O-polysaccharides isolated from plant pathogenic bacteria Pectobacterium wasabiae IFB5408 and IFB5427. Carbohydrate Research, 2016, 426, 46-49.	2.3	18
28	Antibacterial activity of caffeine against plant pathogenic bacteria. Acta Biochimica Polonica, 2015, 62, 605-612.	0.5	37
29	Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Annals of Applied Biology, 2014, 165, 474-487.	2.5	56
30	The agr function and polymorphism: Impact on Staphylococcus aureus susceptibility to photoinactivation. Journal of Photochemistry and Photobiology B: Biology, 2013, 129, 100-107.	3.8	14
31	Influence of Exogenously Supplemented Caffeine on Cell Division, Germination, and Growth of Economically Important Plants. , 0, , .		0